Data

Influence of Irrigation on Biomass Partitioning in Above- and Belowground Organs of Trees Planted in Desert Sites of Mongolia

Planting trees is considered a crucial factor in mitigating the increase in carbon emissions in the atmosphere by generating plant biomass. In addition to advancing our understanding of how tree biomass is allocated in desert environments, we explore potential variations in biomass partitioning based on the irrigation regimes (4, 8, and 12 L h−1) supporting the growth of these trees. Specifically, this study compares the pattern of biomass distribution between above-ground and belowground organs of 11-year-old trees (U. pumila, E. moorcroftii, and T. ramosissima) planted in a desert site in Mongolia. An interesting result of this study is the demonstration that biomass partitioning among roots of different diameter classes differs between the tree species tested, suggesting that each tree species establishes its own type of root/soil interaction. The differences in biomass partitioning in roots could determine specificity in the strength of anchorage and efficiency of nutrition for the trees. We also demonstrate that the presence of plantations influences certain chemical properties of the desert soil, with differences depending on the tree species planted. In addition to presenting a method for planting trees in desert sites, this study underscores that a reliable evaluation of atmospheric carbon sequestration in trees must necessarily include root excavation to obtain an accurate measurement of biomass stored in belowground structures. Assessing the overall biomass produced by these trees allows us to determine the potential for carbon sequestration achievable through plantations established in desert sites.

Data and Resources

Additional Info

Field Value
Source https://www.mdpi.com/1999-4907/15/1/46
Author Ц.Энхчимэг
Maintainer Б.Аззаяа
Last Updated October 29, 2024, 10:17 (UTC)
Created October 29, 2024, 10:16 (UTC)