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A B S T R A C T

The Uvs Lake Basin in western Mongolia is a natural world heritage site and is known for its

diversity in landscape and wildlife. Recently, investigative research has shown that the pro-

tected pristine ecotone is suffering land degradation due to global warming. In order to

obtain evidence of the changes over a long-term time scale, serial multi-temporal Landsat

images obtained between 1995 and 2015 were used to classify land cover and land cover

changes over the Basin ecoregion using a machine learning classification technique, sup-

port vector machine. Results showed that the forest land area in 1995 was 1888.48 km2

which was equivalent to 7.48% of the total area of the study site. The forest area showed

considerable decrease by 301.36 km2 during the first decade (1995–2004) and 155.81 km2

during second decade (2004–2015). A total of 457.17 km2 or 24.21% of the forest land has

been developed, most being changed into grassland. The major driver of such changes

was illegal logging, forest fire, and pest damage. However grassland was changed primarily

into bare land during the two decades. The area of glacier was decreased and primarily

changed into water body. In contrast, the area of sand in the Basin ecoregion increased dra-

matically from 65.20 km2 in 1995 to 318.33 km2 in 2015 the increase being mostly from the

transition of bare land. In summary, the drivers of the significant decrease of greenness

coverage and increase of sand/bare land areas were the interaction of complicated distur-

bances in both anthropogenic and natural factors, in which logging, grazing, wind erosion,

and global warming were the key causes.

� 2018 China Agricultural University. Publishing services by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Land cover changes affect atmospheric, climatic and biologi-

cal spheres of the Earth [1,2]. The physical characteristics of

the surface, seen in the distribution of forest, vegetation,
asin ecore-
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water, soil and other physical attributes of the land that are

due to the influence of human habitation, with an emphasis

on the functional role of land for economic activities, have

been drawing the attention of the worldwide political and sci-

entific community [3].

The Great Lakes Basin in Mongolia consists of the Great

Lakes and the surrounding lands of the provinces of Uvs,

Khovd, Bayan-Olgii, Zavkhan, and Govi-Altai. The Uvs Lake

Basin and the Hyargas Lake Basin located in the area of Uvs

Province are the two major Basins in Mongolia. The Uvs Lake

Basin ecoregion consisting of the Uvs Nuur Lake, wetland,

sand dunes and marshes sitting beside the mountain and for-

ests was listed as a natural World Heritage Site by UNESCO in

2003 due to the natural steppe landscapes which provide

habitats for endangered wildlife, waterfowl mitigation, biodi-

versity, and also contain valuable historical archeological and

cultural features. The Great Lakes Basin contains the most

important wetlands of Central Asia, situated at this ecotone

region in western Mongolia [4] where meteorological data

and ground inspection have shown that global warming has

been affecting land degradation over the protected basin

[2,5]. Such degradation will in turn further impact pasture

degradation, surface and groundwater resources [2].

The Uvs Lake Basin was recognized as a nationally pro-

tected natural landscape in 1993 [5] and the landscape of

the site can be seen as a forest-grassland-desert ecotone with

a steep geographical change. This area is ecosystems shaped

by the extreme climate and still scarcely influenced by

human factors such as overgrazing, soil erosion, salinization,

degradation and increasing human activities [6]. Therefore,

this area was selected as part of the International Geosphere

and Biosphere Programme (IGBP), one of 10 sites over the

world for global climate change study [7]. Information about

the specific site with regards to changes of land cover would

be of great interest.

Remotely sensed data provided a diversity of spectral and

canopy height information which is valuable for exploring

biophysical and biochemical properties of forests [3], carbon

stocks and productivity of terrestrial ecosystems [8–10],

parameters of individual trees [11–14] and forest stand [15],

mapping of land use and land cover [1,16]. One of the most

important benefits of the satellite for observing the earth is

the monitoring of land development or changes [17] supply-

ing quantitative analysis of the spatial distribution of the pop-

ulation of interest [18]. Recently, much research [2,19–23] has

tried to examine the changes of land cover in Mongolia using

a variety of resources satellite images such as SPOT, Landsat,

and MODIS. An interesting result of studies using MODIS EVI

images for the assessment of pasture vegetative coverage was

the observation that the pasture biomass significantly

decreased from 33% to 66% during the period from 2001 to

2011 in the Uvs Province [5]. According to the land resources

census carried out in 2011, some 17.7% or 838.3 km2 of pas-

tureland out of the total basin area was degraded by overgraz-

ing [5]. Obviously, the changes of grassland biomass have

become a problem for sustainable ecosystem management

of the protected Uvs Lake Basin [6,23]. Beyond the grassland,

changes of other land covers of the terrestrial ecosystem such

as forest, dessert steppe, and desert can provide additional
Please cite this article in press as: Jamsran B-E et al. Applying a support v
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evidence of climate change and/or the degradation over such

sub-ecosystems.

As mentioned, a few researchers have explored the

changes of land covers [20,22] and net primary production

of the Mongolian terrestrial ecosystems [21] using moderate

resolution (pixel size in hundred meter) of satellite images.

However, in this case a rare attempt was made to examine

the land cover changes of the particular area of Uvs Lake

Basin (hereafter the Basin). In order to obtain evidence of

changes over a relative small area to address natural and

anthropogenic impacts on the protected area, a series of land

cover classification needed to be made using satellite images

with spatial resolution better than 250/500-meter resolution

MODIS images, for example the Landsat images with 30-

meter pixels.

The approach of exploring land cover change can be quan-

titative or qualitative. A quantitative method detects the

change of spectral information of a pixel vector via a normal-

ized data such as atmospherically corrected reflectance

image. This requires post processing to define what the

meaning of a change vector is. In contrast, a qualitative

method involves two particular steps: land cover classifica-

tion and change analysis. This firstly defines land cover

map for each of multi-temporal images and then draws the

change path of land cover for each pixel. In contrast to the

former method, the later one is an easier way to derive

change paths of the land cover and is therefore a direct and

spatially explicit method for retrieving information of land

cover transition [1].

Support vector machine (SVM) is a non-parametric

machine learning algorithm which is theoretically able to

catch crucial spectral signatures via only a few training sam-

ple (support vectors) deriving the hyperplane to achieve reli-

able and satisfied land cover classification [1]. The

hyperplane generated via the SVM training process is very

consistent over a variety of field observations including

accounting for the prominent role of elevation, slope, humid-

ity and micro-topography on plant distribution [24]. Many

studies [1,13,25–31] have shown the ability of SVM in land

cover mapping and suggest it would be an appropriate

method for deriving the changes of land cover using 30-

meter resolution Landsat images. Therefore, the objective of

this study was to explore the changes of land cover in the

Uvs Lake Basin ecoregion over latest two decades using

multi-temporal Landsat multispectral images. This work also

extended to comparison of the appropriateness of the classi-

fiers SVM and MLC as the later has been generally applied to

map land cover distribution in Mongolia for years.

2. Material and methods

2.1. Study area

Fig. 1 shows the location of the Uvs Lake Basin in western

Mongolia with a small part in Russia (white parts within the

red box of sub-Fig. 1B). The climate condition in the Uvs Lake

Basin is strongly continental and semi-arid, characterized by

long cold winters, dry, windy springs, relatively hot summers

(30 �C), and a short growing season of 158 days from April to
ector model to assess land cover changes in the Uvs Lake Basin ecore-
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Fig. 1 – A geolocation map of the Mongolia (A) and the study site in the Uvs Province (B), and a pseudo-colored picture in a

combination of bands 5-4-3 for the Uvs Lake Basin (C).
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September. Temperatures reach -35 �C or lower in the winter

and 24 �C or more in the summer. In general, the first autumn

snowfall occurs in the first half of October and the last spring

snowfall occurs in the middle of the second ten days of April

and melts immediately. Winter snow cover lasts for 110–150

days a year. Annual precipitation falls between May and

August of which 50% falls in July, 9% in September, 6% in

May and the remaining 20% in thewinter as snow. The annual

precipitation is low around 150–200 mm [5].
Table 1 – The selected Landsat images and date of registration.

Satellite Sensor Date o

Landsat 5 TM 18
Landsat 5 TM 18
Landsat 5 TM 23
Landsat 7 ETM+ (SLC-off) 29
Landsat 7 ETM+ (SLC-off) 21
Landsat 5 TM 05
Landsat 8 Operational Land Imager 02
Landsat 8 Operational Land Imager 20

Please cite this article in press as: Jamsran B-E et al. Applying a support v
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2.2. Data

The Landsat images provide a wide spectral information at a

scale of 60 km area which is suitable for studying land cover

changes over a huge area [32]. As shown in Table 1, a series

of Landsat images obtained during the summer seasons from

1995 to 2015 via TM, ETM+, and OLI sensors were collected

from the website ‘‘http://landsat.usgs.gov”. Because the

images were taken during the vegetative growing season,
f registration Path/row Resolution (m)

/09/1995 141/025 30
/06/1998 141/025 30
/08/2001 141/025 30
/08/2004 141/025 30
/07/2007 141/025 30
/07/2010 141/025 30
/09/2013 141/025 30
/08/2015 141/025 30

ector model to assess land cover changes in the Uvs Lake Basin ecore-
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the data should be appropriate for differentiating the spectral

heterogeneity of land covers and therefore allow retrieval of

valuable land cover information for change analysis. In

Table 1, the SLC-off indicates the Landsat 7 ETM+ images were

collected after May 31, 2003 when the Scan Line Corrector

failed. The USGS provided two methods, i.e., phase one and

phase two to fill the gaps of the SLC-off scene. The phase

two method (https://landsat.usgs.gov/filling-gaps-use-scien-

tific-analysis) incorporated more than two SLC-off scenes

together to create a final product to fix the gap problem in

the data. In addition to the images, the auxiliary datasets

include maps of vegetation class, soil, forest, land use of this

region and Google earth. These data provide support in deter-

mining the spatial distribution of land cover according to

their natural characteristics.

2.3. Image processing and classification

The flowchart (Fig. 2) was followed, which describes the

image processing and analysis for exploring the changes of

land covers of this study. The FLAASH model was firstly

applied to correct images for atmospheric water vapor,

oxygen-carbon dioxide, and aerosol scattering for each image

[33,34]. Then the Function-of-mask (Fmask) algorithm [35–37]

was applied to fix the problem of clouds. The Fmask was first

introduced by Zhu and Woodlock [36] for the use of Landsats

4–7 images and expanded by Zhu et al. [35] for Landsat 8 and

Sentinel-2 images. Based on the cloud physical properties, the

Fmask algorithm uses temperature, spectral variability, and

brightness derived from the visible and SWIR bands to deter-

mine cloud probability of pixels for Landsats 4–7. After the

cloud layer generation, a cloud shadow layer is produced

using NIR and SWIR bands by applying the flood-fill transfor-

mation and a similarity measure of neighboring cloud

heights. In contrast, the cirrus band is used to derive cloud

based on a thresholding method for Landsat 8 instead of

the method for Landsats 4–7.

Land cover classification was carried out using the support

vector machine (SVM) and Maximum Likelihood Classifier

(MLC). MLC tends to be easily influenced by the number of

training samples in the derivation of land cover signatures.

In general, the pixels should at least satisfy 10 times of the

bands for each class in order to avoid the Hughes
Accuracy assessment
Kappa ≥ 0.8

Change 
analysis

Land cover 
classification

Masking Cloud with Fmask

Land cover interpretation 
and sampling

Auxiliary data Signature training and 
evaluation

Landsat images

Atmospheric correction (FLAASH)

No

Yes

Fig. 2 – The flowchart for extracting land covers and change

information from imagery.
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phenomenon. For a classification using statistical classifier

with a limited number of training samples, the accuracy

may decrease as the number of bands used for classification

increase due to the fail to maintain minimum statistical con-

fidence and functionality in remotely sensed data [38]. It is

particularly difficult in this situation to collect sufficient num-

ber of pure training samples from moderate resolution satel-

lite images. In contrast, the SVM classifier needs only a few

key samples for signature training. The SVM classification is

therefore appropriate for dealing with the problems of image

classification with large input dimensionality as well as the

difficulties in collecting sufficient number of pure training

pixels from images with a spatial resolution of 30 m or worse.

The SVM classification of land cover in this study is a

machine learning based nonlinear discrimination for binary

classification. The support vectors derived from the training

samples of any two of the land cover types were used to for-

mulate an optimal hyperplane or decision surface to distin-

guish the class of a candidate pixels belongings. For k types

of land cover classification, a number of k(k-1)/2 decision sur-

faces are derived. Any image pixel is labelled as it locates

exactly on a particularly optimal hyperplane. In other words,

the multiclass SVM classification will not label a pixel to a

class when the pixel falls beyond any other optimal margins.

For a supervised binary classification problem, if the train-

ing data are represented by {xi, yi}, i = 1, 2, . . ., N, and yi 2 {�1,

1}, where N is the number of training samples, yi = +1 for class

x1 and yi = �1 for x2. Let ki be the Lagrange multipliers, yi be

the labels of classes, xi be the support vectors that correspond

to non-zero Lagrange multipliers and x is the input vector

(candidate pixel) that need to determine its class label,

then the hyperplane can be fitted using the formula shown

in Eq. (1),

fðxÞ ¼
XN

i¼1

kiyiKðxi; xÞ þw0 ð1Þ

where
PN

i¼1kiyi ¼ 0, ki �0, i = 1, 2, . . . , N, and Kðxi; xÞ is the ker-

nel function which gives the weights of nearby data points in

estimating target classes, and x0 is the bias or error of the

hyperplane fitting. The radial basis function shown in Eq. (2)

was applied in this study. Following the research of land use

land cover in [1], the gamma and penalty parameters of the

RBF kernel was set to be 0.01 and 100 respectively.

Kðxi; xÞ ¼ expð�cjjxi � xjj2Þ; c > 0 ð2Þ
Following the IGBP classification scheme [20], the land

cover is divided into forest (conifer and broadleaf), grassland,

bareland, bare rock land, waterbody, sand, and glacier. The

descriptions of the land cover types are given in Table 2. With

the supplementary data such as topographic maps and

provincial maps, the land covers were distinguished based

on visual interpretation of satellite imagery using false color

composition of the bands NIR, Red, and Green. Training sam-

ples of each feature class were collected and used to derive

signatures of land cover types. In additional, new samples

were also identified and collected via visual interpretation

of the very high resolution images on Google Earth for the

use of accuracy assessment. Both accuracy indices overall

accuracy (OA) and kappa coefficient were calculated to assess
ector model to assess land cover changes in the Uvs Lake Basin ecore-
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Table 2 – Description of land cover types (the definition in IGBP classification scheme).

Land classes Description

Conifer forest Lands dominated by evergreen woody vegetation with a percent cover >60% height
exceeding 2 m

Broadleaf forest Land dominated by wood with a percent cover >60% and height exceeding 2 m. Consists of
broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods

Grassland The vegetation is dominated by grass species and less than 10% woody vegetation cover
Bareland Land with exposed soil, build-up, roads and never has more than 10% vegetated cover over

during any time of the year
Bare rock land Lands dominated by bare rocks throughout the year
Waterbody Rivers, lakes, streams and land with water
Sand Land of spread sand that never has more than 10% vegetation covers during any time of the

year
Glacier Land of snow and ice
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the performance of the classification. In the results, the OA is

presented in percentage (%) while kappa coefficient is ranged

from 0 to 1.

Change analysis can be carried out based on the perspec-

tives of brightness values (digital number/radiance/reflec-

tance) and thematic values (labelled/classified numbers) at

the level of image pixels. As the change is implemented in a

way of difference, ratio, and even change vector, the physical

meaning of changes is not revealed. In other words, the

method can only provide the information whether the pixel

value is changed or not. While a qualitative method of change

analysis is where classified values are being processed and

therefore is able to provide the exact meaning of a change

in each of the image pixels [1]. The method known as

post-classification change detection [34] was applied for this

purpose and consequently a form of ‘‘from-to” matrix was

generated for each pair of two dates images.

3. Result

3.1. A view on the accuracy of multi-temporal land cover
classifications

In Mongolia, land cover changes were mostly derived by max-

imum likelihood classifier (MLC). Therefore, the land cover

classification was carried out by SVM and MLC classifiers in

order to provide a comparison of the results for the society.

As shown in Fig. 3, the SVM achieved an accuracy of OA

between 87% and 95% and kappa between 0.83 and 0.92 for

the images from 1995 to 2015, while the MLC achieved a lower
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Fig. 3 – The kappa coefficient and overall accuracy of th
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accuracy in both OA and kappa for all the images. In sum-

mary, the OA and kappa accuracy was averaged 92 ± 2.45%

and 0.89 ± 0.03 for the SVM method and 87 ± 2.01% and 0.83

± 0.03 respectively. The accuracy measures showed variation

among the multi-temporal images and the classification

methods. Although the SVM and MLC classifiers achieved

almost identical accuracy with OA = 88% and kappa = 0.84

for the 1995 image, while the SVM appeared to be able to

achieve an average kappa value of 0.06 larger than the MLC.

The difference of classification performance between SVM

and MLC is quite similar to the results published in articles

[1,27]. Looking at the maps of SVM and MLC in Fig. 4, the

MLC tends to exhibit a higher confusion in the vegetation

classes, such as forest and grassland as well as the non-

vegetative classes such as bare soil and bare rock. Conse-

quently, the SVM classified land cover maps were used to

derive change information of the Uvs Lake Basin.

3.2. The temporal trend of land cover changes

As shown in Fig. 5, the land covers maps in each of the serial

multi-temporal images revealed a very high similarity of spa-

tial distribution indicating reasonable classifications achieved

that should be able to reflect the changes of land cover over

the two decades appropriately. In 1995, the area of each land

cover was 1888.48, 5086.08, 14244.14, 140.99, 65.2, 79.53, and

3727.06 km2 for forest, grassland, bare land, bare rock, sand,

glacier (snow), and water body respectively. The dominant

types of land cover in this area was bare land, grassland,

and then forest. Comparing to the area of each type of land
) 1995 2001 2007 2013
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(a)      (b)

Fig. 4 – The land cover map of the Uvs Lake Basin in 1998 derived by the classifiers (a) SVM and (b) MLC.
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cover in 1995, the temporal changes of the land cover areas

during the 20-years period can be classified into three cate-

gories: insignificant change, increasing change, and decreas-

ing change. Representative land cover types of each

category was the waterbody for no change, the sands and

bare land for increasing change, and the forest and glacier

for decreasing change.

The area of water body increased by 1.7% in the early stage

from 1995 to 2001 then decreased by 0.7% in the later stage

from 2001 to 2015. On average, the water body areas changed

�0.7 ± 1.5% during the two decades. As it can be seen in Fig. 6,

the curve of areal change rate of water body showed a tiny

fluctuation in the two decades and therefore it could be con-

cluded that the amount of water reserved in the Uvs Lake

Basin was not changed. However, the coverage of glacier

showed a considerable changes from 79.53 km2 in 1995 to

29.97 km2 in 2015. The curve of areal change rate of the glacier

almost constantly declined during the period with a decreas-

ing rate ranged between 18.2% and 62.3%. Change rate of the

glacier areas was averaged �44.5 ± 13.2%.

Similarly, the coverage area of the forest type decreased

from 1888.48 km2 in 1995 to 1431.30 km2 in 2015 and the

decreasing rate was between 2.3% and 18.9% and averaged

�11.3 ± 5.2%. The significant decreasing trend indicates natu-

ral disturbance such as forest fire and pest damage and/or

anthropogenic disturbance such as logging and grazing

occurred frequently and the decrease is most likely to lead

to a series of land cover changes over time. In contrast, the

sands and the bare soil showed dramatically increasing rates

which ranged between 122.8% and 388.2% for the earlier and

228.5 and 335.7% for the later. As the constant increasing

trend observed from the cumulated areal percentage in

Fig. 6, the land over the Uvs Lake Basin was indeed continu-

ously degraded during the two decades. The grassland cover-

age may be increased somewhat due to deforestation as well

as recruitment over the bare land, however it may be

decreased due to soil degradation. Although a variation of

change rate was observed in the grassland, it eventually

decreased by a small amount of area during the period from

1995 to 2015. In respect to the decreasing trend of the forest

type, the expansion of the sand coverage is most likely to be

increasing in the future. To summarize the changes of each

land cover type, the data in areas and percentages were
Please cite this article in press as: Jamsran B-E et al. Applying a support v
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shown in Table 3, in which the years 1995/2004/2015 present

the start/middle/end points or the first and second decades

of the 20-years period.

3.3. The change path delivered by the change matrices of
land cover

A change matrix of the land cover types can provide details

of the areal changes among the spans over the two decades.

Based on pixel-by-pixel comparisons, the number of areas in

each type of land cover was listed in a square matrix in

which the value in each entry represents the from-and-to

information of land cover types. The value in each of the

diagonal entries means no change during the particular two

years. Tables 4 and 5 show an example of the land cover

change from 2013 to 2015 in the unit of km2 and dimension-

less percentage (%) respectively. As it can be seen, the forest

(conifer and broadleaf) was mainly changed to grassland.

There were 118.80 km2 or 10.9% of the conifer changed and

most of them (88.36 km2 or 8.1%) were changed to grassland.

Additionally, 170.22 km2 out of the changed area of broadleaf

forest (175.75 km2) had been transferred to grassland. In

other words, 28.9% out of the 29.8% changed broadleaf forest

was replaced by grassland. 97.2% of the bare land was

retained while among the change areas there was 332.02

km2 (2.2%) and 52.33 km2 (0.4%) changed to grassland and

sand tunes respectively. This indicates that the change path

of bare land can be decomposition to form sand tunes or

revegetation to grassland according to the changes occurring

in soil moisture. In summary, the dynamics of land cover

changes generally appeared to follow one of two paths, one

the sequences from forest through grassland to bare land

and finally sand dunes and the other is from glacier through

bare land to sand dunes.

3.4. Spatial distribution of deforestation from 1995 to
2015

To summarize the overall changes of the deforestation in the

area of Uvs Lake Basin during the two decades, the classified

maps of land cover in 1995 and 2015 were recoded to generate

binary forest and non-forest maps (Fig. 7a and b). These two

thematic maps were than used to produce a change map to
ector model to assess land cover changes in the Uvs Lake Basin ecore-
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(e)        (f)
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Fig. 5 – Land cover maps of the Uvs Lake Basin for the years (a) 1995, (b) 1998, (c) 2001, (d) 2004, (e) 2007, (f) 2010, (g) 2013, and

(h) 2015.
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highlight the locations of deforestation and forestation.

Fig. 7c shows details of the spatial distribution of those losses

and gains of the forest land. It can be seen that the deforesta-

tion mainly occurred in the north-east part of the Uvs lake

and the reforestation mostly occurred in the south-west part

of the lake and partially on the locations near the deforesta-

tion. Consulting with researchers at the National Agency for
Please cite this article in press as: Jamsran B-E et al. Applying a support v
gion in Mongolia. Info Proc Agri (2018), https://doi.org/10.1016/j.inpa.20
Meteorology and Environmental Monitoring and the Uvs Lake

Basin Projected Area Administration Office of Uvs Province in

Mongolia, it is noted that some of the observed natural distur-

bances such as forest fire and insect damage as well as the

anthropogenic disturbance such as logging was mainly

located around the south-west and south-east parts of the

lake (Fig. 7d).
ector model to assess land cover changes in the Uvs Lake Basin ecore-
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Fig. 6 – The trend of areal changes for the land cover in the Uvs Lake Basin. A negative or positive change rate indicates a

decrease (a) or increase (b) situation respectively.

Table 3 – Statistical result of land cover change detection in two last decades.

Land cover classes 1995 2004 2015

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Conifer forest 1338.29 5.30 1124.44 4.46 981.77 3.89
Broadleaf forest 550.18 2.18 462.67 1.83 449.53 1.78
Grassland 5086.08 20.16 6339.45 25.13 5060.58 20.06
Bare land 14244.14 56.45 13233.91 52.45 14515.2 57.53
Bare rock 140.99 0.56 109.60 0.43 176.38 0.70
Sands 65.20 0.26 224.34 0.89 318.33 1.26
Glacier 79.53 0.32 40.04 0.16 29.97 0.12
Water body 3727.06 14.77 3697.02 14.65 3699.71 14.66
Total 25231.47 100 25231.47 100 25231.47 100

Table 4 – Areal change matrix of the land cover types (km2) from 2013 to 2015.

To 2015

Land cover Conifer Broadleaf Water Bare land Sand Bare rock Grassland Glacier 2013 Total

From 2013 Conifer 974.46 2.53 0.06 27.73 0 0.19 88.36 0 1093.33
Broadleaf 3.86 413.22 0.01 1.66 0 0 170.22 0 588.97
Water 0.04 0 3677.3 5.96 0.02 2.71 0 0 3686.03
Bare land 2.04 2.62 13.55 14441.92 52.33 4.85 332.02 0 14849.33
Sand 0 0 0.49 5.41 265.71 0 0.01 0.49 272.11
Bare rock 1.37 0 0.04 2.6 0.01 168.42 0.02 0 172.46
Grassland 0 31.17 0 29.27 0 0.14 4470.18 0 4530.76
Glacier 0 0 8.26 0.64 0.28 0 0 29.3 38.48
2015 Total 981.77 449.54 3699.71 14515.19 318.35 176.31 5060.81 29.79 25231.47

Table 5 – Percentage change matrix of the land cover types (%) from 2013 to 2015.

To 2015

Land cover Conifer Broadleaf Water Bare land Sand Bare rock Grassland Glacier 2013 Total

From 2013 Conifer 89.1 0.2 0.0 2.5 0.0 0.0 8.1 0.0 100
Broadleaf 0.7 70.2 0.0 0.3 0.0 0.0 28.9 0.0 100
Water 0.0 0.0 99.8 0.2 0.0 0.1 0.0 0.0 100
Bare land 0.0 0.0 0.1 97.3 0.4 0.0 2.2 0.0 100
Sand 0.0 0.0 0.2 2.0 97.6 0.0 0.0 0.2 100
Bare rock 0.8 0.0 0.0 1.5 0.0 97.7 0.0 0.0 100
Grassland 0.0 0.7 0.0 0.6 0.0 0.0 98.7 0.0 100
Glacier 0.0 0.0 21.5 1.7 0.7 0.0 0.0 76.1 100

8 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( 2 0 1 8 ) x x x –x x x

Please cite this article in press as: Jamsran B-E et al. Applying a support vector model to assess land cover changes in the Uvs Lake Basin ecore-
gion in Mongolia. Info Proc Agri (2018), https://doi.org/10.1016/j.inpa.2018.07.007

https://doi.org/10.1016/j.inpa.2018.07.007


(a)     (b)

(c)     (d)

Fig. 7 – Thematic maps of the forest land over the Uvs Lake Basin. Fig. 7(a) and (b) show the binary maps of the forest land in

1995 (a) and 2015 (b). Fig. 7(c) highlights the locations of the gained and lost forest and Fig. 7(d) displays the locations of those

observed disturbances of forest fire, insect damage, and logging.
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Forest degradation is generally a result of global warming

and human activities caused by the economic value of trees

and land grazing for livestock. The dominant tree species of

the forest in the Uvs Lake Basin ecoregion was Siberian larch

(Larix sibirica). Larch timber is a popular material for external

cladding as well as joinery, decking, and flooring. However the

larch grows and regenerates quite slowly due to a short grow-

ing season in the cold continental climate. According to the

meteorological data, the annual average temperature of the

area of Uvs Lake Basin has increased by 2.26 �C over the last

70 years. In particular, the average temperature in the sum-

mer season has increased by 4 �C. In addition to the decreased

precipitation over the last 25 years, the probability of forest

fire and insect damage has therefore increased. As mentioned

earlier, the majority of the deforested areas were on the

north-east side of the lake. In contrast to the disturbance data

observed and provided by the administrative agencies

(Fig. 7d), where the deforestation implies a significant degra-

dation over the latest 20 years and was probably due to illegal

logging, grazing [39], and salinization [40].

4. Discussion

From the viewpoint of land-cover change analysis, a classifica-

tion with 70–75% [38] or 80% overall accuracy [1,41] should be

appropriate for deriving reliable change information. As

noticed in Section 3.1, the accuracy of the land cover classifica-

tion carried out by both SVM and MLC methods have shown

some diversity for the multi-temporal Landsat images. On

average, the SVMclassificationwas able to achieve anaccuracy

at OA = 92 ± 2.45% and kappa = 0.89 ± 0.03 which is better than
Please cite this article in press as: Jamsran B-E et al. Applying a support v
gion in Mongolia. Info Proc Agri (2018), https://doi.org/10.1016/j.inpa.20
theMLCwith OA = 87 ± 2.01% and kappa = 0.83 ± 0.03. Because

the SVM derived land cover maps with a performance better

than the MLC and is substantially able to satisfy the require-

ment of accuracy for land cover mapping, it is recommended

that the Mongolian society should consider using the SVM

for regular land cover mapping of the semi-arid ecosystem.

The Uvs Lake Basin is located in the western Khangai of

the southern Baikal region in Mongolia where the forest-

steppe taiga occupies around only 6.5–7.6% of the region

and is mainly distributed along the high mountain belt and

accordingly the wooded area is small. In the previous section,

the changes of land cover in the study site were derived

almost every three years. As shown in Fig. 6, the curve of

change rate of the forest land declined from 1995 to 2004,

then elevated until 2010 and 2013, and again it decreased after

that. The trend of forest land development is similar to previ-

ous investigations. According to Ykhanbai [42], forest degra-

dation in Mongolia has increased from 1976 to 2006 which

was mainly due to the expansion of forest fire and insect pop-

ulation as well as legal/illegal harvesting [43,44]. An inventory

of natural forest conducted by the Uvs Province government

in 2011 showed that the forest area was significantly

increased in the Uvs Province. Compared to the inventory in

2007, the increment of forest land mainly occurred in some

parts of the ecoregion such as the shrub lands of small groves

and the broadleaf areas along river sides. Although the coni-

fer forest in the Basin ecoregion decreased in 2011 the area of

broadleaf forest expanded around 1300 ha and 1133 ha of the

increment was increased mainly by willow (Salix spp.) [45].

The similarities between our results and the inventory

studies indicates that the classified maps retrieved by this
ector model to assess land cover changes in the Uvs Lake Basin ecore-
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study should be able to reflect the real situation of the devel-

opment of forest land in the Basin ecoregion. Logging activi-

ties in the Basin ecoregion had a greater adverse effect on

vegetation and soil properties than fire [43] and additionally

most of the fires on the steppe and forest were caused by

human activities [44]. Because forest ecosystem help to regu-

late climate amelioration, soil erosion, and provide habitat for

flora, fauna, and microorganism, it is recommended that

more effort should be put into the protection of the Basin

ecoregion to achieve not merely the forest protection but also

the ecosystem conservation.

The vegetation condition of a country is sensitive to change

caused by the climate and human impact. The increasing use

of natural resources also constantly affects the condition of

pastureland as well as the Uvs Lake Basin ecoregion of the

country [46]. The Basin ecoregion is mostly covered by bare

land and grassland. Grassland is themain resource for animal

husbandry. According to the statistics report of Uvs Province,

grazing pressure in the Uvs Province has been increasing

due to the significant increase of livestock population as the

population in 2006was 2xmore than in 2000. Livestock ismost

also likely to cause unfavorable influences to the environ-

ment. The increasing population of livestock can directly

impact on the reduction of grassland areas and thus convert

it to bare land when accompanied with serious water stress

such as the extreme drought that occurred in 2007 [47].

As mentioned earlier, the area of sands has almost

increased by 5 times over the Basin ecoregion during the latest

two decades. Because the significant increase of the sandswas

primarily contributed to by the transition of bare soil, it seems

to be evidence of the process of land desertification in the

Basin ecoregion. This kind of bare land transition is very close

to the research of Batjargal [48]. The Buurug Sand located at

the eastern part of the Uvs lake, recognized as the biggest sand

dune of Mongolia, is where a constantly considerable sand

movement was observed in the past. The eolian process sug-

gests the most/medium/less amount of sand will be observed

in the winter, the spring and autumn, and the summer with a

rate of 40%, 22–28%, and 15% respectively [48]. Obviously, the

eolian processes are constantly active and can cause signifi-

cant soil moisture loss and erosion. An investigation reported

in 1997 showed that wind erosion in Mongolia has caused soil

losses of 35–50 tons/ha to cultivated land during the past 30

years [48], this is very similar to the increase of sand coverage

found in this study. The dynamics of sand massifs indicate a

process of land desertification. In addition, the climate change

has affected the degree of evapotranspiration and dryness on

the soil surface, which in turn may cause the rise of a dust

storm [49]. Therefore, it is expected that the deflation of soil

and even sand dunes movement in the Uvs Lake Basin will

occur continuously.

The glacier in the Turgen Mountain accounts for more

than 20% of the total coverage of the Mongolian glaciers [5].

The glacier increased slightly between 1940 and 1992 but

decreased by 44.4% during the period from 1992 to 2011

[5,50,51]. The decrease in the latest two decades are similar

to our results. Regional dynamics of permafrost is, under nat-

ural conditions, determined by climate change, especially by

long-term changes in mean annual air temperature and pre-

cipitation [46]. Obviously, the significant decreasing rate of
Please cite this article in press as: Jamsran B-E et al. Applying a support v
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glacier in the summertime is mainly the result of climate

change or global warming [50]. According to the estimation

of Dorjgotov et al. [5], air temperature of the Uvs Lake Basin

will tend to rise by 4.0–4.4 �C for the upcoming 10–90 years

and the precipitation will increase by 10–40% in the winter

while most likely no significant changes will occur in the

summer. This means that the climate will be hot, dry in the

summer and warm with more snow in the winter in the Basin

ecoregion. The latest research published in articles [52,53]

highlighted the strength of RGB-UAV sensor in the detection

of newly grown tree leaves which can provide valuable infor-

mation for retrieving phenological events of trees and further

growth of trees. In contrast to the moderate resolution remo-

tely sensed data, satellite images with a decimeter level of

spatial resolution are recommended for their capability of

sensing tiny size targets for detecting crucial evidence of tree

phenology, carbon stock [54], and the development of forest

stand [55] as well as the changes caused by global warming.

5. Conclusion

This study investigated land cover changes in the Uvs Lake

Basin ecoregion in western Mongolia during the period of

1995–2015 by remote sensing approaches. With the support

vector Landsat multispectral signatures of forest (conifer

and broadleaf), grassland, bare land, sand, bare rock, water,

and glacier, the land cover maps were achieved with an aver-

age kappa value of 0.89 which was able to provide reliable

information for deriving the change of land cover. The land

coverage by each of the land cover types were in order, bare

land, grassland, waterbody, forest, bare rock, glacier, and sand

in 1995. Although the area of each land cover type changed

during the investigation period, the coverage of the top four

types remained in the same order. However, the three types

with smaller areal percentage, i.e., bare rock, glacier, and sand

were changed such that they were in the reverse order. The

changes were mainly caused by the impact of natural and

anthropogenic disturbances.

During the latest two decades, regarding the change of

land cover of the study site the decrease of vegetation cover-

age including forest and grassland was around 482 km2 which

was around 1.91% of the study site. The process of greenness

reduction was mainly caused by logging, grazing, and fires. In

contrast, the increase of bare land and sand was 524 km2 or

2.08% of the ecoregion. This was mainly contributed by soil

degradation and eolian processes and even the interaction

of natural processes (e.g. extreme drought and global warm-

ing) and human activities (such as reduction of greenness

and over grazing). Due to global warming, the glacier had a

decrease of around 50 km2 or 0.10% coverage of the Basin

ecoregion in the summer season. The reduction was small

but it was 62% of the glacier area in 1995. The melted ice or

snow flowed into the Uvs Lake and thus compensated for

the water losses due to evaporation. As a result, the area of

waterbody was reduced by only around 0.11% of the total area

of the ecoregion. The reduction took only 0.73% part of the

water coverage in 1995.

Details of the transition of land cover types can help to

examine the situations of a land, especially for a protected

ecoregion over time, in order to meet the need of appropriate
ector model to assess land cover changes in the Uvs Lake Basin ecore-
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management for sustainability. As noted, the Uvs Lake Basin

ecoregion has suffered from the impact of global warming,

drought, wind erosion, and land degradation during the last

two decades. In order to reduce the trend of soil degradation

and forest development in the Basin ecoregion, more effort

must be made to regulate the animal husbandry and logging

activities as well as increase forest fire prevention. Instead of

development activities, ecological tourism is likely to be able

to provide economic contributions to the ecoregion and also

provide economic support for natural landscape protection.
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Multi-source land cover classification for forest fire
management based on imaging spectrometry and LiDAR
data. For Ecol Manage 2008;256:263–71.

[27] Maryantica N, Lin C. Exploring changes of land use and
mangrove distribution in the economic area of Sidoarjo
District, East Java using multi-temporal Landsat images.
Inform Process Agr 2017;4:321–32.

[28] Petropoulos GP, Kontoes C, Keramitsoglou I. Burnt area
delineation from a uni-temporal perspective based on
Landsat TM imagery classification using Support Vector
Machines. Earth Obs Geoinf 2011;13:70–80.
ector model to assess land cover changes in the Uvs Lake Basin ecore-
18.07.007

http://refhub.elsevier.com/S2214-3173(18)30191-4/h0005
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0005
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0005
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0005
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0010
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0010
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0010
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0015
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0015
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0015
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0015
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0025
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0025
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0025
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0025
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0040
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0040
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0040
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0040
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0045
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0045
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0045
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0050
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0050
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0050
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0050
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0055
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0055
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0055
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0060
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0060
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0060
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0060
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0065
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0065
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0065
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0065
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0070
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0070
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0070
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0070
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0070
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0075
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0075
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0080
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0080
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0080
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0080
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0085
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0085
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0085
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0085
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0090
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0090
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0090
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0090
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0095
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0095
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0095
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0095
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0105
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0105
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0105
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0105
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0110
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0110
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0110
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0110
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0110
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0115
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0115
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0115
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0120
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0120
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0120
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0125
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0125
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0125
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0130
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0130
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0130
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0130
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0135
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0135
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0135
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0135
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0140
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0140
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0140
http://refhub.elsevier.com/S2214-3173(18)30191-4/h0140
https://doi.org/10.1016/j.inpa.2018.07.007


12 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( 2 0 1 8 ) x x x –x x x
[29] Deilmai RB, Ahmad BB, Zabihi H. Comparison of two
classification methods (MLC and SVM) to extract land use
and land cover in Johor Malaysia. IOP Conf Series: Earth
Environ Sci 2014;20:1–7. https://doi.org/10.1088/1755-1315/20/
1/012052.

[30] Taati A, Sarmadian F, Mousavi A, Pour CTH, Shahir AHE. Land
use classification using support vector machine and
maximum likelihood algorithms by landsat 5 TM images. Eng
Phys Sci 2015;12(8):681–7.

[31] Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T.
Selection of classification techniques for land use/land cover
change investigation. Adv Space Res 2012;50:1250–65.

[32] Duveiller G, Defourny P, Desclee B, Mayaux P. Deforestation in
Central Africa: Estimates at regional, national and landscape
levels by advanced processing of systematically-distributed
Landsat extracts. Remote Sens Environ 2008;12:1969–81.

[33] Jensen JR. Introductory digital image processing: a remote
sensing perspective. 2nd, 3rd ed. USA: Englewood Cliffs,
NJ: Prentice Hall; 2005.

[34] ITT Visual Information Solutions. Atmospheric correction
module: QUAC and FLAASH User’s Guide. IDL; 2009.

[35] Zhu Z, Wang Sh, Woodcock CE. Improvement and expansion
of the Fmask algorithm: cloud, cloud shadow, and snow
detection for Landsat 4–7, 8, and Sentinel 2 images. Remote
Sens Environ 2015;159:269–77.

[36] Zhu Z, Woodcock CE. Object-based cloud and cloud shadow
detection in Landsat imagery. Remote Sens Environ
2012;118:83–94.
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