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Simple Summary: An outbreak of the unique pest Erannis jacobsoni Djak in Mongolia would severely
impact the forest ecosystem. Therefore, this study employed a combination mode of UAV-RGB
vegetation indices and texture features, utilizing the sequential projection algorithm to extract
sensitive features and machine learning algorithms to construct a damage level recognition model,
achieving low-cost, rapid, and effective pest detection. The results indicate that the combined mode
of the RGB vegetation indices and texture features yielded good pest detection results, with an overall
accuracy of 89%. This could provide an important experimental foundation for subsequent large-scale
forest pest monitoring with a high spatiotemporal resolution.

Abstract: Erannis jacobsoni Djak (Lepidoptera, Geometridae) is a leaf-feeding pest unique to Mongolia.
Outbreaks of this pest can cause larch needles to shed slowly from the top until they die, leading to a
serious imbalance in the forest ecosystem. In this work, to address the need for the low-cost, fast,
and effective identification of this pest, we used field survey indicators and UAV images of larch
forests in Binder, Khentii, Mongolia, a typical site of Erannis jacobsoni Djak pest outbreaks, as the
base data, calculated relevant multispectral and red–green–blue (RGB) features, used a successive
projections algorithm (SPA) to extract features that are sensitive to the level of pest damage, and
constructed a recognition model of Erannis jacobsoni Djak pest damage by combining patterns in the
RGB vegetation indices and texture features (RGBVI&TF) with the help of random forest (RF) and
convolutional neural network (CNN) algorithms. The results were compared and evaluated with
multispectral vegetation indices (MSVI) to explore the potential of UAV RGB images in identifying
needle pests. The results show that the sensitive features extracted based on SPA can adequately
capture the changes in the forest appearance parameters such as the leaf loss rate and the colour
of the larch canopy under pest damage conditions and can be used as effective input variables for
the model. The RGBVI&TF-RF440 and RGBVI&TF-CNN740 models have the best performance, with
their overall accuracy reaching more than 85%, which is a significant improvement compared with
that of the RGBVI model, and their accuracy is similar to that of the MSVI model. This low-cost and
high-efficiency method can excel in the identification of Erannis jacobsoni Djak-infested regions in
small areas and can provide an important experimental theoretical basis for subsequent large-scale
forest pest monitoring with a high spatiotemporal resolution.
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1. Introduction

Erannis jacobsoni Djak (Lepidoptera, Geometridae) is a unique leaf-feeding pest in
Mongolia that feeds on larch needles, and it causes the most damage during its larval stage
(June to July) [1]. During this period, larvae violently feed on needles, causing larch to
slowly shed from the top and the growth condition of the trees to gradually suffer until
death, which leads to a serious imbalance in the forest ecosystem [2]. According to a survey,
since 1920, Erannis jacobsoni Djak has shown a trend of spreading from the northwest to
the southeast of Mongolia, and the typical outbreak area of the Khentii province is only
over a hundred kilometres away from China’s Greater Khingan Mountains’ forest area [3].
Since there is no natural barrier between the two countries for interception, pest invasion
is very likely. The pest has a strong adaptability to the environment; once it invades
new areas, it will easily form a dominant population, which will cause immeasurable
environmental damage to forest areas and economic losses. It is evident that the timely
monitoring and control of this pest are extremely important to protect forest ecosystems.
At present, pest prevention measures in Mongolia are based on the manual dispersal
of chemical pesticides or biological pesticides [4], which are implemented mainly by
experience, do not distinguish among pest distribution areas, and lack a precise guidance
basis [5], resulting in the insufficient application of pesticides to severely affected areas and
their excessive application to mildly affected areas, leading to environmental pollution [6].
Therefore, methods that identify the level of pest damage for Erannis jacobsoni Djak can not
only improve the efficiency of pesticide implementation and reduce the pollution of the
environment by pesticides but also maintain the balanced development of plant ecosystems,
which has theoretical significance and practical value in maintaining ecological security.

Research on pest damage monitoring has been the focus of scholars both domestically
and internationally [7,8]. In traditional pest research, pest monitoring and investigation
are mainly carried out by professionals on-site, resulting in relatively accurate and reliable
data. However, this method is time-consuming, labour-intensive, expensive, and envi-
ronmentally destructive and cannot meet the demands of large-scale applications. The
development of remote sensing technology has made it possible to monitor pest damage at
a regional scale [9,10]. Over the past few decades, satellite remote sensing technology has
developed significantly, achieved a high monitoring accuracy, and been widely applied
by scholars [11–13]. However, the potential applications of satellite remote sensing in
many pest research areas have been limited by low temporal and spatial resolutions, high
costs, and weather conditions [14]. In addition, many monitoring models can only provide
high-precision experimental results at a large scale, such as at the national, provincial,
or municipal level, and cannot describe the changes in pest infestation in detail within
relatively small areas [15].

Recently, the utilisation rate of unmanned aerial vehicle (UAV) platforms has increased.
Their advantages, such as ease of operation, high spatial resolution, and high observation
frequency, have shown to be of practical value in natural disaster research [16,17]. The
calculation of vegetation indices based on UAV imagery spectral reflectance has been
proven to be an effective method for monitoring the level of plant damage. For example,
Abdollahnejad et al. used dual-temporal UAV data to calculate vegetation indices and
assessed the health of mixed broad-leaved and needle-leaved forests using machine learning
algorithms [18]. Ma et al. combined spectral information based on UAV multispectral
data and applied deep learning methods to invert the damage information of Tomicus
yunnanensis [19]. Guerra-Hernández et al. discriminated the level of damage of black alder
under Phytophthora infestation using UAV multispectral vegetation indices, achieving a
maximum accuracy rate of 75% [20]. The above research confirms that, compared with
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traditional methods, appropriate spectral vegetation indices can be used to more effectively
monitor pests and diseases, but this requires more advanced and expensive multispectral
sensors as a basis. As an alternative, some scholars have investigated vegetation parameters
and pests and diseases using vegetation indices obtained from the red–green–blue (RBG)
images of commercial unmanned aerial vehicle RGB cameras [21]. For example, del-
Campo-Sanchez et al. used UAV RGB imagery to detect the damage level of Jacobiasca
lybica pests in vineyards [22]. De Castro et al. differentiated healthy and wilt-diseased
avocado trees using vegetation indices calculated from UAV RGB images and obtained good
results [23]. Although the cost of acquiring data from UAV RGB vegetation indices (RGBVI)
is relatively low, the monitoring effect is comparatively inferior to that of multispectral
data [24,25], and its accuracy cannot fully meet the requirements. Therefore, if other
appropriate features are added on the basis of RGBVI, it may be possible to achieve an
improvement in detection accuracy [26]. The texture structure information of the tree
canopy, which is widely recognised as a characteristic quantity in addition to spectral
information, can reflect features that cannot be reflected by the spectrum. It is also one of
the factors that affect the robustness of vegetation indices [27,28] and can be used as an
ideal feature combined with RGBVI. It can reflect the subtle changes in trees with insect
pests, avoid the influence of factors such as “same spectrum, different object” and “same
object, different spectrum” in the presence of land features, and stretch the distance of an
image [29]. It has great potential in plant pest identification and increases the feasibility of
some studies. Currently, there are more cases of using RGB texture features (RGBTF) alone
to monitor vegetation [30,31] than there are reports on using RGBTF with other data as
monitoring variables. The complementary fusion of RGBVI and RGBTF features can unlock
the unlimited potential of RGB images for pest observation, opening up new economic,
high-frequency, and high-precision ways to monitor pests. This is of great significance for
the rapid diagnosis and prevention of Erannis jacobsoni Djak pest infestation.

In terms of vegetation health detection methods, scholars have used algorithms that
focus on traditional machine learning and deep learning. For example, Syifa et al. used
two machine learning algorithms, that is, support vector machines and artificial neural
networks, to distinguish between healthy and affected trees in the case of pine wilt disease,
achieving an accuracy of 94.13% [32]. Duarte et al. utilised the random forest algorithm to
detect the damage status of eucalyptus trees under the threat of eucalyptus long-horned
borers, achieving a classification accuracy of 98.5% [33]. Liu et al. identified 31 categories
of forestry pests using the YOLO-4 algorithm with convolutional neural networks and
obtained excellent results [34]. Among them, the random forest (RF) and convolutional
neural network (CNN) classifiers are frequently and widely used for quantitative tree and
vegetation pest detection due to their excellent computing speed and ability to handle
complex data, respectively [35–37].

Based on the above discussion, the purpose of this paper is to identify the damage
level of Erannis jacobsoni Djak based on UAV remote sensing images of typical areas of
Erannis jacobsoni Djak infestation, combined with RGBVI and RGBTF information, using RF
and CNN methods to answer three basic questions: (i) whether the successive projections
algorithm (SPA) can filter out the features that are sensitive to the level of pest damage
from many variables, (ii) whether the combined pattern of RGBVI and RGBTF (RGBVI&TF)
can improve the accuracy of the pest detection model, and (iii) how to choose a suitable
model to build the algorithm when the sample size is unstable.

2. Materials and Methods
2.1. Study Area

The study area is located within the typical outbreak area of Erannis jacobsoni Djak:
a region of Binder, Khentii, Mongolia, with a length of 600 m, a width of 300 m and an
average altitude of 1100 m. The study area was mainly dominated by Larix sibirica, with
approximately three thousand Larix sibirica with different levels of damage distributed
in the area, and the tree species was relatively homogeneous, which provided natural
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conditions for the invasion of Erannis jacobsoni Djak. The area had been frequently infested
with Erannis jacobsoni Djak between 2010 and 2020, and signs of the pest were found by
the local forestry survey team in late May and early June 2021. Therefore, the researchers
used an UAV to collect RGB visible and multispectral image data from the test area in late
June 2021. Meanwhile, 840 larch sample trees were randomly selected from the test area
for the study on pest damage level identification (Figure 1).
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Figure 1. Location of the study area and sample trees.

2.2. Materials Acquisition and Processing
2.2.1. Field Data

In the study area, 840 sample trees of larch with different levels of damage were
selected, and a survey of the geospatial coordinates and leaf loss rate of each tree was
completed. The sample trees were divided into three layers—upper, middle, and lower—
and three typical branches of each layer were selected to count healthy and damaged
needles and calculate the leaf loss rate using Equation (1). Then, the average value was
taken as the leaf loss rate of the current sample tree.

DR =
Ld

Lh + Ld
× 100% (1)
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where DR denotes the rate of leaf loss and takes values between 0 and 100%, and Lh and Ld
denote the number of healthy and damaged needles, respectively. On this basis, through
the experience of visual discrimination in field and the classification criteria in previous
studies, the results were classified into pest damage levels based on Table 1 [38], where the
final classification results of 210 larch trees into healthy, mild, moderate, and severe levels
are shown.

Table 1. Damage level classification criteria.

Mark 1 2 3 4

Damage level Healthy Mild Moderate Severe
Leaf loss rate 0–5% 6–30% 31–70% 71–100%

2.2.2. UAV Image Data

A test was conducted with a DJI Phantom 4 multispectral quadcopter drone equipped
with an all-in-one imaging system with RGB visible sensors (red, green, and blue channels)
and five multispectral sensors (blue, green, red, red-edge, and near-infrared bands). Each
camera had a 200-pixel resolution, and the resolution reached the centimetre level. Data
acquisition was conducted under clear, cloudless, and windless conditions from 10:00 to
14:00 British Summer Time (BST), with the flight altitude being set at 100 m. The camera
was calibrated with a whiteboard before the flight, and the camera probe went down
vertically during the flight to acquire the observation images. After the flight, the images
were preprocessed by “DJI Terra” to obtain two types of images—RGB and multispectral
images. On this basis, the sample larch was visually segmented with ArcMap10 to obtain
the canopy vector, and the damage level was assigned according to the measured leaf loss
rate data (Figure 2).
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2.2.3. Feature Extraction

Vegetation indices are combinations of two or more reflectance wavelengths that
enhance differences in reflectance characteristics between stands of various levels of damage
and are less influenced by light and background [39]. Referring to a previous study, we used
60 multispectral vegetation indices (MSVI) and 22 RGB vegetation indices (RGBVI), which
are widely used in plant pest and related studies, for the detection of Erannis jacobsoni Djak
pests [5,15,18,25,40–42]. First, the MSVI and RGBVI were calculated from the corresponding
images using “Envi”. Second, based on the sample tree canopy vector, the average value of
each feature was extracted tree-by-tree as the index value of the sample tree at hand.

In addition, to extract RGBTF, principal component analysis (PCA) was performed
based on the red, green, and blue channels of the RGB images. PCA is a statistical method
to transform a set of potentially correlated variables into a set of linearly uncorrelated
variables by orthogonal transformation, which can reduce the dimensionality of the feature
space to achieve the elimination of redundant information, help speed up the calculation,
and improve the accuracy of a model [26]. Among various texture extraction algorithms,
the grey-level cogeneration matrix (GLCM) is widely used for texture analysis [43]. The
results of the PCA were used to calculate eight texture feature values by GLCM, including
the mean (mean), variance (var), homogeneity (hom), contrast (con), dissimilarity (dis),
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entropy (ent), second moment (sm), and correlation (corr) values [44,45], and the mean
value of each feature was calculated as the RGBTF value of each sample tree by the sample
trees canopy vector on a tree-by-tree basis. The final calculation results of MSVI, RGBVI,
and RGBTF were normalised to reduce errors.

2.3. Methods
2.3.1. Feature Sensitivity Analysis and Extraction

(1) Sensitivity analysis of variance
An analysis of variance (ANOVA) is used to determine whether subtyped independent

variables have a significant effect on numerical dependent variables by calculating the
variance statistic F value and testing whether the means of each aggregate are equal. The
basic idea is to determine the magnitude of the influence of controllable factors on the study
results by analysing the magnitude of the contribution of variance from different sources to
the total variance. With the help of ANOVA, the variances of MSVI, RGBVI, and RGBTF on
the pest damage level were calculated to reveal the sensitivity of these features to the pest
damage level. The larger the F value of a feature, the more significant the sensitivity of the
feature to the level of pest damage.

(2) Sensitive feature extraction
With the help of SPA, MSVI, RGBVI, and RGBVI&TF were downscaled to eliminate

overlapping and redundant information and retain meaningful features, which were set
as the sensitive feature sets of MSVI, RGBVI, and RGBVI&TF as the input variables of the
recognition model. SPA is a forward variable selection algorithm that minimises the
covariance of modelling variables. It has the advantage that extracting a few columns of
data in the initial data set can summarise the information of the vast majority of feature
variables, achieve the elimination of redundant information, minimise information overlap,
perform well when dealing with large-scale data, filter modelling features, and improve
model accuracy. Details of the SPA algorithm can be found in [2].

2.3.2. Multispectral and RGB Features for Needle Pest Recognition

(1) Pest recognition model with sensitive features
By combining the damage level of the pests to the sampled larch and the corresponding

sensitive feature sets, the damage level recognition model of Erannis jacobsoni Djak was
established in MATLAB2022 with the help of RF and CNN algorithms, which were used
to explore the application potential of sensitive features. RF is a data mining model that
is commonly used for classification prediction. Its main principle is to generate a new
set of training samples by repeatedly randomly sampling k samples from the original
training sample set of a size N through the bootstrap resampling technique and then
generate k classification trees to form a random forest based on the self-help sample set.
The classification results of the new data are determined by the number of votes formed by
the classification trees to obtain a more accurate and stable prediction result [46]. CNN is
widely used in deep learning and is a deep neural network with a convolutional structure.
The model usually consists of five parts: input, convolution, pooling, dense connection, and
output. It can map high-dimensional nonlinear data to a low-dimensional space, realise
data dimensionality reduction, effectively reduce the number of parameters in the network,
and alleviate the overfitting problem of the model [38].

(2) Analysis of the pest recognition potential of sensitive features
A total of 75% of the trees from all the samples were randomly selected as the training

data set (including a training set and a validation set) for modelling and optimal model
selection, and the remaining 25% were used as the test data set to validate the model and
analyse its pest recognition potential. To objectively evaluate the model’s performance, the
overall accuracy (OA), Kappa coefficient, and confusion matrix were calculated based on
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), the
main metrics for model accuracy validation [21,47,48]. OA is the probability that the classi-
fication result for each random sample is consistent with the type of data tested, ranging
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from 0 to 1. A larger value indicates a higher accuracy of the model’s implementation. The
Kappa coefficient is a metric used for consistency testing and represents the proportion
of error reduction generated by classification versus completely random classification; it
ranges from −1 to 1. Larger values indicate a better stability of the model’s implementation
and vice versa. The confusion matrix is calculated by comparing the victimisation level of
each measured sample with the corresponding victimisation level after prediction classifica-
tion, which can characterise the classification accuracy of the model for each victimisation
level in this paper; the user accuracy (UA) and producer accuracy (PA) in the confusion
matrix are used to evaluate the discrimination results of each damage level. The specific
formulas for the accuracy evaluation metrics above are as follows:

OA =
TP + TN

TP + TN + FP + FN
(2)

Kappa =
OA − ∑k

i=1 NP×Nt

S2

1 − ∑k
i=1 NP×Nt

S2

(3)

where k is the number of classes, Np is the number of predictions, Nt is the number of
actual measurements, and S is the sample size.

3. Results
3.1. Sensitivity Analysis of RGB Features

To investigate the response of RGB characteristics to different damage levels, four
damage levels of larch and the corresponding RGB features were plotted (Figure 3). As
shown in the figure, most of the features showed significant hierarchical changes in the
level of damage, from healthy to severe. Specifically, the indices CIVE, ExR, R, RGRI,
and VARI showed a gradual increase; the indices B, GCC, GRVI, NGRVI, PPR, and WI
showed irregularities; and the remaining indices showed a decreasing trend. For RGBTF,
the mean, hom, sm, and corr showed upwards trends, and the var, con, dis, and ent showed
downwards trends. This is because, when the larch is healthy, its leaf loss rate is minimal,
the biochemical fraction of needles is sufficient, the canopy appears green, and all the
information reflected in the RGB images is normal vegetation information. When the pests
begin to invade larch, abnormal changes in the content of biochemical components of the
needles, an increase in the rate of leaf loss in the stand, and a change in the canopy colour
from green to yellow, red, and grey, which, in turn, affect the information captured by the
RGB channel, are obvious responses to changes in the level of pest damage, implying that
it is feasible to use RGB features to identify the degree of pest damage.

To reveal the sensitivity of the selected features to different damage levels of the pest,
the damage levels were subjected to ANOVA with the corresponding RGB features, and the
variance distribution was plotted (Figure 4). As it can be seen from the figure, the condition
under which the variance of different damage levels and each feature satisfies p < 0.01 is
F > F0.01 (4, 840), indicating that features with F > 3.34 are sensitive to different damage
levels of the pest. When F > F0.01

−10 (4, 840), p < 0.01−10, indicating that the sensitivity
between the features with an F value larger than 13.57 and the level of pest damage is
extremely significant [49]. The results showed that all the features except for B, GCC,
NGRVI, and RGBVI were highly sensitive with respect to the degree of damage. All the
features except for PPR had an F value of 13.57, with significant sensitivity to different
damage levels of the pest. For RGBVI, the index ExGR had the highest F value of 3194.7,
while, in RGBTF, the mean reached the highest value (F = 731.8). It is evident that most of
the features analysed were significantly sensitive to different damage levels of the pests
and had a good ability to identify the damage level.
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3.2. Sensitive Feature Extraction

The recognition model was constructed by extracting sensitive input variables through
the SPA algorithm, and then, based on the optimal model, the sensitive features were
analysed, and their feature contributions were obtained.

The results show that, for the optimal RF model (Table 2), seven features of all MSVIs
were selected as sensitive features. Among them, the NDVIreg, SI1reg, SI1reg*, and TCARI
indices had a red-edge band in their constituent spectral bands because the red-edge band
was in the middle of the red-valley and near-infrared (NIR) bands, and its changes were
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influenced by the simultaneous reflectance of the red-valley and near-infrared bands that
are correlated with the degree of pest damage, which is the fastest changing band in the
red-edge region [50]. The presence of NIR bands in the constituent spectral bands of the
2NLI, GDVI, and GMNLI indices was due to the fact that the NIR bands were controlled
by parameters such as plant moisture and internal structure that had a significant response
to the level of stand damage. The RGBVI and RGBVI&TF sensitive feature sets included nine
and thirteen features, respectively, of which eight features were selected in both feature sets.
When RGBTF was added to RGBVI, slightly more features were selected by SPA, especially
the four selected in RGBTF, indicating that the addition of texture features added necessary
information to the identification of pest damage levels based on the RGB features.

Table 2. Input sensitive features of optimal RF models.

Feature Sets Sensitive Features Formula

MSVI-SPA440

2NLI (NIR2 − g)/(NIR2 + g)
GDVI NIR − g

GMNLI 1.5(NIR0.5 − g)/(NIR0.5 + g + 0.5)
NDVIreg (NIR − RE)/(NIR + RE)

SI1reg (g*RE)0.5

SI1reg* (r*RE)0.5

TCARI 3[(RE − r) − 0.2(RE − g)(RE/r)]
RGBVI-SPA440 ExG 2 g − r − b

RGBVI-SPA440/RGBVI&TF-SPA440

B B
ExR 1.4R − G

GBRI G/B
GCC G/(R + G + B)

R R
RBRI R/B
RGRI R/G
VDVI (G − B − R)/(G + B + R)

RGBVI&TF-SPA440

GLA (2G − R − B)/(2G + R + B)
CIVE 0.441r − 0.881 g + 0.3856b + 18.78745
Mean ∑N−1

i,j=0 i × Pi,j

Dis ∑N−1
i,j=0 i × Pi,j|i − j|

Ent ∑N−1
i,j=0 i × Pi,j

(
−lnPi,j

)
SM ∑N−1

i,j=0 i × P2
i,j

In the MSVI, b, g, r, RE, and NIR represent the spectral reflectance at the blue, green, red, red-edge, and near-
infrared bands, respectively. In the RGBVI and RGBTF, R, G, and B represent the reflectance at the red, green, and
blue channels, respectively. “i, j” represents row number (i) and column number (j) in the matrix P; “N” represents
row number or column number in P; and “Pi ,j” represents cell I, a normalised value in J.

For the CNN optimal model (Table 3), the sensitive feature set of MSVI included ten
indices, of which seven indices had red-edge bands in the constituent spectral bands, and
three indices had NIR bands in the constituent spectral bands. The sensitive feature sets of
RGBVI and RGBVI&TF contained four and six features, respectively, and three of them were
selected by both feature sets. In the results, the index GLA could handle the brightness of
the vegetation cover images, which could attenuate the interference of shadows between
the trees and, thus, reflect the change in the vegetation canopy [51]. The indices GBRI, RBRI,
and RGRI could describe and analyse the angular sensitivity of the vegetation indices,
which could effectively deal with the complex vegetation canopy structure and were more
sensitive to the rate of needle leaf loss during the damage process [25,52]. The index GB
could enhance the difference in spectral response between the blue and green channels and
could characterise the information of conifer chlorophyll content in the forest trees [53]. The
dis feature was able to reflect the degree of inhomogeneity between image elements and had
excellent results in edge detection, helping researchers identify complex canopy appearance
shapes [54]. The texture feature mean had a good ability to classify pest damage areas [29].
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Table 3. Input sensitive features of optimal CNN models.

Feature Sets Sensitive Features Formula

MSVI-SPA740

2NLI (NIR2 − g)/(NIR2 + g)
GMNLI 1.5(NIR0.5 − g)/(NIR0.5 + g + 0.5)
MTVI2 1.5[1.2(NIR − g) − 2.5(r − g)]/[(2NIR + 1)2 − (6NIR − 5r0.5) − 0.5]0.5

Int2reg* (g + r + RE)/2
NDSIreg (RE − NIR)/(RE + NIR)

RECI (NIR/RE) − 1
SCCI 100(lnNIR − lnr)/[(NIR − r)/(NIR + r)]
SI1reg (g*RE)0.5

SI1reg* (r*RE)0.5

SI2reg (g2 + RE2 + NIR2)0.5

RGBVI-SPA740 GLA 2 g − r − b

RGBVI-SPA740/RGBVI&TF-SPA740

GB g − b
GBRI G/B
RBRI R/B

RGBVI&TF-SPA740

RGRI 0.441r − 0.881 g + 0.3856b + 18.78745
Mean ∑N−1

i,j=0 i × Pi,j

Dis ∑N−1
i,j=0 i × Pi,j|i − j|

In the MSVI, b, g, r, RE, and NIR represent the spectral reflectance at the blue, green, red, red-edge, and near-
infrared bands, respectively. In the RGBVI and RGBTF, R, G, and B represent the reflectance at the red, green, and
blue channels, respectively. “i, j” represents row number (i) and column number (j) in the matrix P; “N” represents
row number or column number in P; and “Pi ,j” represents cell I, a normalised value in J.

In addition, in order to understand the influence of the input features on the model, the
contribution of sensitive features was calculated to reveal the importance of each variable
in pest recognition. The main purpose of this study was to demonstrate the pest recognition
potential of the RGBVI&TF model, so the RF and CNN optimal models based on RGBVI&TF
were used to calculate the contribution of each sensitive feature with the help of the Gini
coefficient, as shown in Figure 5. The RF optimal model had the largest contribution of GLA
to the model at 0.21, indicating that this feature provided more decisive information for the
model. It was followed by CIVE, GBRI, RGRI, and ExR. The contribution of RGBTF was
relatively low compared to RGBVI, with mean, sm, ent, and dis values of 0.03, 0.004, 0.003,
and 0.0008, respectively. The contributions of RGRI and GBRI in the CNN optimal model
were high, at 0.29 and 0.23, respectively, while the contribution of other vegetation indices
was 0.11 for GB and 0.08 for RBRI. The contributions of the texture features mean and dis
were 0.08 and 0.0009, respectively. The contribution of the mean in the texture features was
significant and it was robust to outliers and could reflect global pest occurrence; thus, it is a
universal feature and has the potential to be applied to pest recognition research.

Insects 2024, 15, x FOR PEER REVIEW 11 of 21 
 

 

 SI2reg (g2 + RE2 + NIR2)0.5 
RGBVI-SPA740 GLA 2 g − r − b 

RGBVI-SPA740/RGBVI&TF-SPA740 
GB g − b 

GBRI G/B 
RBRI R/B 

RGBVI&TF-SPA740 

RGRI 0.441r − 0.881 g + 0.3856b + 18.78745 

Mean ෍ 𝑖 × 𝑃௜,௝ேିଵ௜,௝ୀ଴  

Dis ෍ 𝑖 × 𝑃௜,௝|𝑖 − 𝑗|ேିଵ௜,௝ୀ଴  

In the MSVI, b, g, r, RE, and NIR represent the spectral reflectance at the blue, green, red, red-edge, 
and near-infrared bands, respectively. In the RGBVI and RGBTF, R, G, and B represent the reflectance 
at the red, green, and blue channels, respectively. “i, j” represents row number (i) and column num-
ber (j) in the matrix P; “N” represents row number or column number in P; and “Pi,j” represents cell 
I, a normalised value in J. 

In addition, in order to understand the influence of the input features on the model, 
the contribution of sensitive features was calculated to reveal the importance of each var-
iable in pest recognition. The main purpose of this study was to demonstrate the pest 
recognition potential of the RGBVI&TF model, so the RF and CNN optimal models based on 
RGBVI&TF were used to calculate the contribution of each sensitive feature with the help of 
the Gini coefficient, as shown in Figure 5. The RF optimal model had the largest contribu-
tion of GLA to the model at 0.21, indicating that this feature provided more decisive in-
formation for the model. It was followed by CIVE, GBRI, RGRI, and ExR. The contribution 
of RGBTF was relatively low compared to RGBVI, with mean, sm, ent, and dis values of 
0.03, 0.004, 0.003, and 0.0008, respectively. The contributions of RGRI and GBRI in the 
CNN optimal model were high, at 0.29 and 0.23, respectively, while the contribution of 
other vegetation indices was 0.11 for GB and 0.08 for RBRI. The contributions of the texture 
features mean and dis were 0.08 and 0.0009, respectively. The contribution of the mean in 
the texture features was significant and it was robust to outliers and could reflect global 
pest occurrence; thus, it is a universal feature and has the potential to be applied to pest 
recognition research. 

 
Figure 5. The importance of sensitive RGB features for optimal RGBVI&TF models. 

3.3. Analysis of the Pest Damage Level Recognition Potential of RGB Features 
3.3.1. Overall Accuracy Evaluation of Pest Damage Recognition 

Based on the sensitive features of RGBVI&TF extracted by the SPA algorithm, we con-
structed the recognition model of Erannis jacobsoni Djak pest damage degree with the help 

Figure 5. The importance of sensitive RGB features for optimal RGBVI&TF models.



Insects 2024, 15, 172 11 of 20

3.3. Analysis of the Pest Damage Level Recognition Potential of RGB Features
3.3.1. Overall Accuracy Evaluation of Pest Damage Recognition

Based on the sensitive features of RGBVI&TF extracted by the SPA algorithm, we
constructed the recognition model of Erannis jacobsoni Djak pest damage degree with the
help of CNN and RF algorithms under the condition of different numbers of sample trees,
verified its accuracy (Tables 4 and 5), and compared and evaluated the recognition results
with the sensitive features of MSVI and RGBVI.

Table 4. Accuracy evaluation of RF model for trees with different damage levels.

OA Kappa

Features Set

Size of Simple Trees MSVI-SPA RGBVI-SPA RGBVI&TF-SPA MSVI-SPA RGBVI-SPA RGBVI&TF-SPA

140 0.7429 0.6286 0.7714 0.6927 0.5663 0.7276
240 0.7000 0.6333 0.7333 0.6487 0.5788 0.6836
340 0.8706 0.8353 0.8353 0.8372 0.7964 0.7964
440 0.9091 0.8455 0.8636 0.8843 0.8092 0.8295
540 0.8889 0.837 0.8593 0.8589 0.7987 0.8241
640 0.8812 0.825 0.825 0.8515 0.7864 0.7864
740 0.8432 0.8324 0.8270 0.8050 0.7935 0.7887
840 0.8 0.8286 0.8143 0.7568 0.7911 0.7708

Bold digits indicate the highest model accuracy in each features set.

Table 5. Accuracy evaluation of CNN model for trees with different damage levels.

OA KAPPA

Features Set

Size of Simple Trees MSVI-SPA RGBVI-SPA RGBVI&TF-SPA MSVI-SPA RGBVI-SPA RGBVI&TF-SPA

140 0.7714 0.6286 0.7714 0.7255 0.5604 0.7282
240 0.8 0.6833 0.7833 0.7581 0.6329 0.7376
340 0.8235 0.7412 0.8353 0.7825 0.6923 0.7969
440 0.8273 0.7636 0.8455 0.7860 0.7149 0.8080
540 0.8519 0.8148 0.8519 0.8157 0.7703 0.8153
640 0.8875 0.825 0.8688 0.8591 0.7859 0.8370
740 0.9135 0.8649 0.8865 0.8892 0.8306 0.8565
840 0.8857 0.8381 0.8286 0.856 0.7996 0.7889

Bold digits indicate the highest model accuracy in each features set.

As seen from the table, among the RF models, MSVI-RF, RGBVI-RF, and RGBVI&TF-RF
showed a gradual increase in accuracy as the number of sample trees increased gradually
from 140 until the OA and Kappa of all three models (MSVI-RF440, RGBVI-RF440, and
RGBVI&TF-RF440) peaked when the number of samples reached 440 and became the optimal
model, at which point the accuracy began to decrease gradually. This indicated that the
best model performance for studies applying RF to recognise the damage level of Erannis
jacobsoni Djak was achieved with a sample size of approximately 440. Among these optimal
models, MSVI-RF440 achieved the highest OA and Kappa values of 0.9091 and 0.8843, which
were improvements compared to the 0.0636 and 0.0751values, respectively, obtained by
RGBVI-RF440. This was because spectral reflectance was more responsive to subtle changes
in covariates such as vegetation chlorophyll and leaf loss rate than R, G, and B, which were
sensitive only to the canopy colour of affected larch. To improve the recognition effect of
RGBVI, it was combined with RGBTF, and this method achieved a significant improvement
in model accuracy. Specifically, compared to RGBVI-RF440, the OA and Kappa of RGBVI&TF-
RF440 improved by 0.0181 and 0.0203, respectively, and the difference between the OA and
Kappa of MSVI-RF440 was reduced by 0.0455 and 0.0548, respectively.
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For the CNN model, the accuracy also improved when increasing the number of
sample trees from 140 to 840. The OA and Kappa coefficients of the three models reached
their highest values when the number of samples was 740; these were set as the optimal
models (MSVI-CNN740, RGBVI-CNN740, and RGBVI&TF-CNN740). This suggests that, when
recognizing Erannis jacobsoni Djak damage levels with CNN, the training sample can be
increased as much as possible to improve the model accuracy, and the sample size is most
suitable at approximately 740. Among the three models, MSVI-CNN740 achieved the
highest accuracy with OA and Kappa coefficients of 0.9135 and 0.8892, respectively, which
were 0.0486 and 0.0586 higher than those of RGBVI-CNN740. By combining RGBVI and
RGBTF features, optimisation of the model was achieved. Specifically, the OA and Kappa
coefficients of RGBVI&TF-CNN740 improved by 0.0216 and 0.0259, respectively, compared to
RGBVI-CNN740, and the difference between them and MSVI-CNN740 was reduced to 0.027
and 0.0327. These results are consistent with most scholars’ findings [55–57].

3.3.2. Accuracy Evaluation of Different Damage Levels Recognition

To explore the discriminative effect of the model on each class in more detail, the
confusion matrix of the optimal model was drawn by combining the results of the actual
measurements and predictions (Figure 6).
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As seen from the figure, all the models showed excellent results in the discrimination of
healthy stands, followed by the discrimination of the level of severe damage, with UA being
more prominent. In the RF model, the discrimination of healthy and severely damaged
stands was improved more by considering RGBVI&TF compared to RGBVI, especially in the
discrimination of healthy stands, where both UA and PA reached a value of 1, indicating
that there were no commission and omission. In the CNN model, compared to RGBVI,
RGBVI&TF improved the discrimination of mild, moderate, and severe damage stands,
with UA and PA improving by 0.0256, 0.0588, and 0.0244 and 0.0257, 0.0488, and 0.0212,
respectively, while its UA decreased with respect to the discrimination of healthy stands
due to two trees being misclassified as healthy larch. The above results show that the
combination variables of RGBVI and RGBTF had substantial correlations with the level
of tree damage and had great application effect and value for Erannis jacobsoni Djak pest
recognition efforts.

4. Discussion
4.1. Efficiency of SPA-Based Selection of Sensitive Features

In some previous plant pest studies, scholars modelled all selected features to monitor
the severity or physicochemical parameter content [58], but not all the features have a
positive effect on the study process, and the information contained in each feature is often
“cross-informative” [59], which affects the final judgement. In this paper, SPA was used to
eliminate the features with overlapping information and select numerous optimal features
with less mutual redundancy for modelling to simplify the data and reduce the complexity
of the model. The accuracy evaluation results of the model show that the sensitive feature
variables selected by SPA can meet the needs of pest damage level identification.

To reveal the effect of SPA in feature screening more intuitively, this paper used all
MSVI, RGBVI, and RGBVI&TF features based on 440 and 740 samples to construct models
(Ent-RF440 and Ent-CNN740, respectively) to compare them with the recognition effect
of SPA’s sensitive features, and the results are shown in Figure 7. In both the RF and
CNN categories, the SPA-based models not only did not decrease but even improved in
accuracy compared with the models based on all the features, and, especially in the models
based on the RGBVI&TF features, all the accuracy metrics improved. For example, in model
RF440, when RGBVI&TF-SPA was compared with RGBVI&TF-Ent, the OA, Kappa, UA, and
PA were improved by 0.0.63, 0.0416, 0.032, and 0.0446, respectively; in model CNN740, with
RGBVI&TF-SPA being compared with RGBVI&TF-Ent, the OA, Kappa, UA, and PA improved
by 0.027, 0.0311, 0.0306, and 0.0272, respectively. The reason for this may have been that the
information contained in the RGBVI&TF-Ent feature set had a high degree of redundancy,
which affected the accuracy of the model.

Thus, the performance of various models proves that SPA can reduce the dimension-
ality of the data and reduce the amount of cumbersome information in the features, a
step which, in our research, could effectively extract the features which were sensitive and
meaningful to the degree of pest damage and improve the model’s stability and accuracy.
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4.2. Differences in Recognition Accuracy for Different Damage Levels

The confusion matrix of RGBVI&TF-RF440 and RGBVI&TF-CNN740 revealed (Figure 6)
that the model had a higher accuracy in recognizing health and severity levels and a slightly
lower recognition accuracy for mild and moderate levels, a matter which is especially
significant from the perspective of UA. This is because the difference in canopy colour
caused by abnormal chlorophyll and water contents in needles is more obvious in healthy
and severely damaged larch than in mildly and moderately damaged larch, which are
green and grey–black, respectively, and in these cases, the features of red, green, and blue
channels captured by RGB sensors are more prominent and easier to recognise, while the
canopy colours of larch with mild and moderate levels of damage are more similar to one
another (between yellow and red), meaning that the difference in the features reflected
by the RGB sensor is small, and the RGB feature values of some sample trees with mild-
and moderate-level damage appear similar, resulting in a lower prediction accuracy. In
addition, Erannis jacobsoni Djak usually lays its eggs beneath the humus layer, and it feeds
in a manner starting from the lower part of the larch and climbing upwards. This has
a certain probability of causing a difference in the appearance of the upper (green) and
lower (yellow) colours of larch at the same time. This leads to a situation in which a field
survey classified a tree as having mild damage by the average rate of leaf loss, but the UAV
orthophoto can only capture the green and healthy canopy of the upper part of the forest
and cannot penetrate deeper to obtain information on the lower canopy, resulting in an
incorrect classification. When the pest gradually eats from the lower part of the tree to its
upper part, the appearance of the upper canopy of some trees starts to change, and the
lower dead needles have a certain probability of regrowing (appearing green), resulting
in a moderate degree of field division, and the colour information reflected to the UAV
sensor in this case is a grey colour, characterizing a heavy degree of damage, thus causing
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recognition errors. This is consistent with the findings (UA, Health: 0.86, Mild: 0.02, Severe:
0.6, Dead:0.98) of Megat et al. when monitoring the extent of damage to eucalyptus trees
from pests and diseases [60].

In the field survey, some needles of affected trees had a green or yellow semigloss
form. Such needles were defined as damaged needles in the calculation of leaf loss rate
and, thus, were classified as severely damaged from the perspective of the leaf loss rate but
were identified as moderate or mild by the RGB colour features of the UAV camera, which
explains why the PA of RGBVI&TF-CNN740 identified the severity damage as low, at 0.7872.

4.3. The Damage Level Recognition Potential of RGBVI&TF

The recognition of Erannis jacobsoni Djak pests by multispectral and RGB features
revealed that MSVI-based models consistently outperformed RGBVI models, similar to
the results of most pest and disease studies [61]. To this end, the pest was recognised by
combining RGBVI and RGB image-derived texture features RGBTF to create a new feature
set, called RGBVI&TF. Finally, the recognition of RGBVI&TF was improved compared with
RGBVI, and the model accuracy was closer to that of MSVI, which proved the importance
of TF in pest monitoring. This is because the study with RGBVI only was based on the
assumption that pixels are independent, meaning that any spatial relationship between
neighbouring pixels was not considered in the preprocessing process [62], which may have
affected the results due to “pretzel noise” in the classification image. TF is a common visual
phenomenon—a local structure or arrangement rule which recurs in an image—which
can reflect the intrinsic characteristics of the surface of the feature, does not vary with
RGB reflection brightness, can characterise the spatial patterns and details between forest
pixels [54], suppresses the “same spectrum, different object” and “same object, different
spectrum” phenomena between forest canopy and understory vegetation spectra, and has a
better robustness to factors such as illumination and shadows, thus providing information
in our study which could not be explored by RGBVI. RGBVI&TF contained not only RGB
reflection information but also image texture information, capturing features related to the
level of pest damage from different directions and containing more comprehensive disaster
information so that model performance was significantly improved. This is consistent with
the research results of Liu et al., combining the RGB vegetation index and texture features
to estimate plant biomass to evaluate the health status of plants [63]. The combined mode
of RGBVI and RGBTF in this experiment showed excellent capability and provided a new
method for pest control research with low costs and a high efficiency.

In addition, the contribution ranking in Figure 5 shows that the main information-
providing variable is RGBVI, not RGBTF, so we hypothesised that RGBTF can provide
supplementary information in pest monitoring studies but cannot be applied alone. To
test the above hypothesis, only RGBTF was used to complete the discrimination of pest
damage levels. The results showed that the discrimination accuracy of RGBTF-RF440 and
RGBTF-CNN740 was lower than that of the other models, and the optimal OA and Kappa
did not reach 0.55, which made it difficult for the model to meet the experimental demands.
This suggests that RGBTF can only be involved in the pest recognition model as an auxiliary
variable in combination with RGBVI. This is in agreement with the results of Zhou et al. in
a vegetation recognition study [64].

4.4. Model Application

In this paper, traditional machine learning RF and deep learning CNN were utilised
as algorithms for model construction. When using all the samples for modelling, CNN
showed better results compared to RF, a finding which is consistent with our previous
research and Kumar et al.’s findings on using deep learning for diagnosing plant early
blight and late blight [38,65]. In addition, we found that the size of the sample had an
impact on the model construction process, so we tested its performance, and an optimal
model was obtained by changing the sample size. The RF model showed an inverted
U-shaped trend in accuracy as the sample size increased, and the highest accuracy occurred
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when the sample size was 440, which was then the sample size set in the optimal model.
The accuracy of the CNN model continued to increase as the sample size increased, and
the optimal model was obtained when the sample size reached 740. The reason for this
may have been that there was, inevitably, feature noise in the data due to the influence of
shadows or backgrounds and label noise due to inconsistencies between the upper and
lower canopies of the affected trees, leading to a gradual increase in the number of outliers
in the process of increasing the sample size, which had a certain impact on the RF model
and caused a decrease in accuracy and performance [66]. While CNN in deep learning
uses local correlations in the process of convolution, it has some robustness in the face of
outliers [67], and the model’s stability does not fluctuate significantly; thus, its accuracy
improves as the sample size increases.

Of course, the CNN model has a sample size requirement, meaning that more samples
are needed to train a more stable model [68]; therefore, deep learning algorithms outperform
traditional machine learning algorithms when the sample size is sufficient [69,70]. CNN
can be used as a first choice to identify the level of damage of Erannis jacobsoni Djak pests.
However, field sampling is difficult, and a sufficient number of samples may not be used
in every trial, so the RF algorithm can be used instead in the absence of samples and can
effectively recognise the presence of pests.

4.5. Limitations and Prospects

The experiment showed that the accuracy of the MSVI-based model could meet the
requirements for the identification of the damage level of Erannis jacobsoni Djak [71], which
was expected. However, its high acquisition cost limits the progress of some important
studies. In contrast, RGB images are cheaper to acquire than multispectral images, and our
research’s results on the combined RGBVI&TF indices obtained by RGB images are close to
those of MSVI, making low-cost and high-precision pest identification possible.

In this paper, through the experience of previous studies, field survey parameters
and UAV images of the test area at the end of June were used as the basic data sources
for Erannis jacobsoni Djak pest monitoring. However, the timing of canopy colour change
after each insect infestation varied, a phenomenon which was related to insect population
density, tree genetics, host vigour, and environmental conditions [72,73]. In turn, long-term
field observations were needed to collect drone images and ground data at appropriate
times for the accurate identification of pests [48].

Since the focus of this paper was to investigate the potential of RGB images in pest
identification, only 22 RGB vegetation indices and RF and CNN algorithms [37], which are
widely used by scholars, were selected to obtain more satisfactory results in the construction
of the model. If we were to refer to some more meaningful RGB vegetation indices and
frontier algorithms on this basis, the accuracy and generalisation ability of the model would
very likely improve, a matter which will be explored in our next experiments.

5. Conclusions

In this study, we used UAV images of an Erannis jacobsoni Djak outbreak area as the data
source, used a combined model of RGBVI and RGBTF to construct a pest damage recognition
model, and compared and analysed the experimental results with other models using MSVI
and RGBVI to explore the potential of RGBVI&TF. This study confirmed that features derived
from low-cost RGB images can essentially replace the multispectral identification of Erannis
jacobsoni Djak pest damage levels. The experimental results were more optimistic: the
accuracy of the RGBVI-based pest damage recognition model was very low compared with
that of MSVI, but the results changed after combining it with RGBTF, and the accuracies of
RGBVI&TF-RF and RGBVI&TF-CNN were significantly improved compared with those of
RGBVI-RF and RGBVI-CNN and were close to those of MSVI-RF and MSVI-CNN. On this
basis, the confusion matrix of the RGBVI&TF model revealed that the model was extremely
good at recognizing healthy and severely infested regions, while the detection accuracy of
mildly and moderately infested regions was low, which was caused by pest habits and the
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orthorectification principle of UAV. In addition, SPA eliminated redundant and overlapping
information in the data to provide effective input variables for the model, and the accuracy
and suitability of the model constructed by SPA were improved compared with those of
the models using all the features.

Using RGBVI&TF can achieve the identification of the level of pest damage at a small
scale, and the results of this model can meet the needs of the relevant forestry departments.
This study also provides a reference example and a theoretical basis for subsequent low-
cost, large-area pest monitoring and control with a high spatial and temporal resolution
and forest ecosystem protection.
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