
Ecological Indicators 154 (2023) 110714

Available online 14 August 2023
1470-160X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Original Articles 

Optimizing spectral index to estimate the relative chlorophyll content of the 
forest under the damage of Erannis jacobsoni Djak in Mongolia 

Peiling Li a,b, Xiaojun Huang a,b,c,*, Shan Yin a,b, Yuhai Bao a,b, Gang Bao a,b, Siqin Tong a,b, 
Ganbat Dashzeveg d, Tsagaantsooj Nanzad d, Altanchimeg Dorjsuren e, Davaadorj Enkhnasan e, 
Mungunkhuyag Ariunaa d 

a College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China 
b Inner Mongolia Key Laboratory of Remote Sensing & Geography Information System, Hohhot 010022, China 
c Inner Mongolia Key Laboratory of Disaster and Ecological Security on the Mongolia Plateau, Hohhot 010022, China 
d Institute of Geography and Geology, Mongolian Academy of Sciences, Ulaanbaatar 15141, Mongolia 
e Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia   

A R T I C L E  I N F O   

Keywords: 
Erannis jacobsoni Djak 
Relative chlorophyll content 
Hyperspectral features 
Estimation potential 

A B S T R A C T   

Jas’s Larch Inchworm (Erannis jacobsoni Djak) is a Lepidopteran insect pest that seriously threatens larch forest 
ecosystems in Mongolia. Damage caused by E. jacobsoni changes the chlorophyll content of forest trees, leading to 
significant changes in the color of the larch canopy. Chlorophyll content, an important parameter that reflects the 
physiological state of plants, is expressed as the relative chlorophyll content (RCC) evaluated using a chlorophyll 
meter. In this study, we estimate the relative chlorophyll content of forest trees damaged by E. jacobsoni by 
optimizing the spectral index. Four larch forest areas affected by outbreaks of this pest in Ikhtamir, Battsengel, 
and Tsenkher in the Mongolia Houhangai Province and Binder in the Khentii Province were selected as study 
areas. Based on the RCC and measured hyperspectral data of forest trees, hyperspectral features such as spectral 
index (SI) and continuous wavelet coefficients were analyzed. Partial least squares regression (PLSR), support 
vector machine regression (SVMR), and stepwise multiple linear regression (SMLR) were used to estimate the 
RCC of the total damage process and different degrees of damage. The optimized spectral index (OSI) showed the 
highest potential for estimating the total damage process, exhibiting good estimation accuracy and model sta-
bility. For example, in the SVMR model, the R2A of OSI-39 SVMR was 0.077, 0.074, 0.014, and 0.115 higher than 
those of the traditional spectral index (TSI), bior1.5, coif1, and sym3, respectively, while the RMSE was 0.017, 
0.021, 0.014, and 0.048 lower than those of TSI, bior1.5, coif1, and sym3, respectively. In the estimation of 
different degrees of damage, the estimation performance of OSI was significantly improved compared with that 
of TSI and had the same potential as that of coif1. TSI, OSI, and coif1 showed the best estimation potential in a 
moderate degree of damage, of which OSI-SVMR had the best effect (R2A = 0.710 44 and RMSE = 0. 137). 

The optimization and combination method of SI used in this study will help to facilitate future research. Our 
findings provide insights into the estimation of RCC at the regional scale and for the effective monitoring of forest 
pest severity.   

1. Introduction 

Erannis jacobsoni Djak (Lepidoptera: Geometridae) completes one 
generation each year. Larvae first appear in early May, begin over-
feeding on needles in early June, molt four times, enter the soil, and 
pupate at the end of July. Adults usually appear in September and in-
festations continue until mid-October. The females lay eggs in cracks in 

the bark and overwinter with their eggs, and are wingless and hence 
cannot fly; therefore continue to infest the same tree for many years in a 
row. The damage due to this pest is characterized by slow growth along a 
6–7-year cycle which peaks causing a large outbreak, following which 
the trees continue to lose leaves for 3–4 years, resulting in their death. 
E. jacobsoni Djak. is adapted to dry and continental climates. In recent 
years, severe infestations of this pest have been reported in coniferous 
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forest areas in northern and northeastern Mongolia (Huang et al., 2018; 
Xi et al., 2020; Bai et al., 2021) posing a major threat to the security of 
local forest ecosystems. During an infestation, the appearance (canopy 
color and structure), as well as internal biochemical components 
(moisture, pigment, and nitrogen) of the affected trees, change consid-
erably (Lin et al., 2016; Foster et al., 2017; Rahimzadeh-Bajgiran et al., 
2018). Chlorophyll, the main component of plant pigments, is directly 
associated with plant photosynthetic potential, nutrient element con-
tent, primary productivity, and change in leaf color (Rumpf et al., 2010; 
Wang et al., 2015; Sakowska et al., 2018). Therefore, chlorophyll is an 
important indicator that reflects the physiological status of plants and 
helps to evaluate forest health. Estimation of chlorophyll content in 
different states of forest trees is vital for risk assessment of forest diseases 
and pest outbreaks, early identification of their occurrence, and esti-
mation of the severity of the situation (Wu et al., 2012; Hamzeh et al, 
2013; Oeser et al, 2017). The change in chlorophyll content is highly 
correlated with the spectral features of the leaves, which translates into 
the optical features that can be utilized as markers for the accurate 
estimation of chlorophyll concentration (Peñuelas et al., 1993; Ma et al., 
2022). The SI constructed based on the spectral bands sensitive to the 
change of chlorophyll content provides insights into changes in chlo-
rophyll and better estimates the chlorophyll content of plants (Lausch 
et al., 2013; Zhang et al., 2018). For example, modified chlorophyll 
absorption in reflectance (MCARI), transformed chlorophyll absorption 
in reflectance index (TCARI), medium resolution imaging spec-
trometer–terrestrial chlorophyll index (MTCI), optimizing soil adjusted 
vegetation index (OSAVI), normalized area over the reflectance curve 
(NAOC), and other hyperspectral indices can effectively reduce the 
impact of soil background and leaf area index (Wu et al., 2008). The 
hyperspectral indices such as red/green pigment indices (RGI), first 
derivative reflectance of modified simple ratio (BmSR), Gitelson and 
Merzlyak 1 (GM1), and triangular vegetation index (TVI) constructed 
using the green light zone and red edge wavelength can effectively 
alleviate the impact of ground saturation under high chlorophyll con-
centration (Gitelson and Merzlyak, 1997; Broge and Leblanc, 2001; Liao 
et al., 2013). Modified simple ratio index (MSRI), photochemical 
reflectance index (PRI), pigment-specific simple ratio (PSSR), and 
pigment-specific normalized difference (PSND) can also estimate chlo-
rophyll content under vegetation stress (Blackburn, 1998; Frampton 
et al., 2013; Li et al., 2015). Spectral indices are used to investigate 
changes in biochemical components of forest trees under disease and 
insect stress due to their advantages in universality and ease of operation 
(Li et al., 2016; Hornero et al., 2020; Iordache et al., 2020). Since forest 
diseases and insects often have characteristics such as large outbreak 
areas and fast transmission speed, real-time dynamic monitoring of them 
is necessary at a large regional scale. Multi-temporal and large-scale 
unmanned aerial vehicle (UAV) and satellite remote sensing data can 
well meet this demand (Zhang et al., 2016; Imanyfar et al., 2019; Wil-
liams et al., 2021; Shirazinejad et al., 2022). However, the construction 
of the SI is mostly based on one plant, which cannot be accurately 
applied to research on different plants or different growth periods of 
plants (Wang et al., 2016). In recent years, the rapid development of 
acquisition and processing technologies for various types of hyper-
spectral data (satellite remote sensing data such as EO-1 Hyperion, 
Gaofen-5, Sentinel 2, and unmanned aerial vehicle airborne UAV 
hyperspectral data) has facilitated the study of chlorophyll content and 
other biochemical components of various forest trees (Fuente et al., 
2018; Pulitia et al., 2018; Pałaś and Zawadzki, 2020; Astola et al., 2021). 

Based on the process of change caused by disaster stress associated 
with E. jacobsoni Djak, this study used the TSI, optimized spectral index 
(OSI), and smooth spectral continuous wavelet coefficients (CWCs) to 
establish regression models to estimate the RCC. The aims of the current 
study are to (1) reveal the sensitivity of TSI and CWCs to the RCC of 
affected trees; (2) analyze OSI band change; (3) compare the estimation 
potential of TSI, OSI, and CWCs during the total damage process; (4) 
compare the estimation potential of TSI, OSI, and CWCs at mild, 

moderate, and severe damage levels. 

2. Materials and methods 

2.1. Data acquisition and preprocessing 

2.1.1. Study area 
Four typical forest areas affected by E.jacobsoni Djak. outbreaks in 

Ikhtamir, Battsengel, and Tsenkher in the Houhangai Province and 
Binder in the Khentii Province, Mongolia, were selected as the test areas 
(Fig. 1). The test areas have continental climates and comprise conif-
erous forest areas with a single tree species. There were no outbreaks of 
other pests in the forest area during the sampling year, and natural di-
sasters such as drought did not occur. 

A total of 110 sample trees were selected in the test areas (Table 1). 
The health statuses of sample trees were evaluated according to survey 
data on leaf loss rate. The sample trees were classified as healthy, mildly 
damaged, moderately damaged, and severely damaged based on leaf 
losses of 0–5%, 6–30%, 31–70%, and 71–100%, respectively. The 
number of trees evaluated as healthy and mildly, moderately, and 
severely damaged were 12, 33, 30, and 35, respectively. 

2.1.2. Hyperspectral data 
An ASD FieldSpec4 portable ground object spectroradiometer 

(Analytical Spectral Devices, Boulder, Colorado, USA) was used to 
collect spectral data. Each sample tree was vertically classified into three 
levels, namely upper, middle, and lower. At each level, a typical branch 
representing the physiological state of the tree was selected for spectral 
measurement. The average value was taken as the spectral reflectance 
value of the tree. Spectral measurements were performed under clear 
and cloudless weather conditions from 10:30 to 14:30 Beijing time. 
During the measurement, the probe used a field of view of 25◦ and a 
downward vertical direction from a height of approximately 0.2 m. A 
reference whiteboard was used for spectral correction before and after 
measurements. The original spectral reflectance data were smoothed 
using the Savitzky–Golay method and recorded as smooth spectral 
reflectance (SSR). The SSR values under different levels of tree damages 
are shown in Fig. 2a. 

Using the 36 mother wavelet bases of the four wavelet systems bio-
rthogonal (bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3. 1, 
bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, and bior6.8), Coiflets 
(coif1, coif2, coif3, coif4, and coif5), Daubechies (db1, db2, db3, db4, 
db5, db6, db7, db8, db9, and db10), and symlets (sym2, sym3, sym4, 
sym5, sym6, sym7, and sym8) to perform continuous wavelet transform 
on the SSR on the scale of 21 to 210, a series of continuous wavelet co-
efficients were obtained. Forty SIs that performed well in chlorophyll 
content estimation were selected (Table S1). 

2.1.3. Chlorophyll content data 
A SPAD-502 portable chlorophyll meter (NANBEI, Henan, China) 

was used to measure the chlorophyll content of sample trees. SPAD 
measurement was performed on typical branched used for spectrum 
measurement, which was arranged during the early morning or late 
afternoon without clouds to reduce the influence of solar radiation on 
the SPAD reading. To improve the accuracy of measurement, three twigs 
of different health levels were selected from each branch, and readings 
were taken from the tip, middle, and sheath of the needle to calculate the 
average SPAD reading of each twig; the average value of three twigs was 
used as the branch SPAD value. Finally, the average SPAD value of three 
typical branches was taken as the RCC value of the sample tree. A Q–Q 
diagram was drawn to determine whether RCC data met the modeling 
requirements (Fig. 2b). The expected value was roughly distributed on a 
straight line and within the 95% confidence zone. The maximum, min-
imum, average, and standard deviation values were 50.3, 2.74, 20.76, 
and 12.58, respectively. This indicated that RCC data met the modeling 
requirements. 
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Fig. 1. Study area. (a) Battsengel, (b) Ikhtamir, (c) Tsenkher, and (d) Binder.  

Table 1 
Overview of the study area.  

Larch forest area Sampling date Number of sample trees Average altitude (m) Area (m2) Age of sampled trees 

Young Middle Old 

Ikhtamir June 18, 2016 27  1,766.75 19,923 7 11 9 
Battsengel June 18, 2016 21  1,808.95 14,851 8 10 3 
Tsenkher June 19, 2016 16  1,728.89 10,001 5 10 1 
Binder June 12, 2019 44  1,160.75 308,709 17 23 4  

Fig. 2. (a) Specific simple ratio (SSR) under pest infestation severities, (b) Quantile–quantile (Q–Q) plot of relative chlorophyll content (RCC) data.  
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2.2. Methods 

Hyperspectral feature extraction and estimation model establish-
ment is shown in Fig. 3. First, the Pearson correlation analysis method 
was used for sensitivity analysis. The sensitivity of hyperspectral char-
acteristics to changes in RCC was analyzed using the determination 
coefficient (R2) of the correlation coefficient, R (Liao et al., 2013), and 
the spectral index significantly correlated with RCC under the condition 
of P = 0.01 was selected. Thereafter, the find peaks function–successive 
projection algorithm (Findpeaks-SPA) pattern (Huang et al., 2019) was 
used to construct TSI and CWCs that were ultimately used for modeling. 
The accuracy and stability of the model was verified using thecorrection 
determination coefficient (R2

A) and root mean square error (RMSE) of the 
model. To a large extent, model accuracy and stability may characterize 
model performance. R2

A and the RMSE may be calculated using the 
following equations: 

R2
A = 1 −

[

1 −

(

1 −

∑
i(ŷi − yi)

2

∑
i(yi − yi)

2

)]
(n − 1)
(n − k)

(8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(9)  

where ŷi is the predicted value of canopy chlorophyll content, yi is the 
measured value of canopy chlorophyll content, yi is the average value of 
canopy chlorophyll content, n is the number of samples, and k is the 
number of variables. The closer R2

A is to 1, the better the model accuracy, 
and the closer RMSE is to 0, the better the stability. 

The index used to build TSI was optimized to obtain OSI. The spectral 
index set (SIj) was calculated by considering the arrangement and 
combination of all wavelengths in this band range. The correlation be-
tween SIj and RCC was analyzed. The SI with the highest R2 was selected 
to adjust the original SI with its corresponding wavelength. The adjusted 
process was as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

X1 = [Am1Am2⋯ Amm]

X2 = [Bn1 Bn2⋯ Bnn]

⋮⋮
Xi = [Ck1 Ck2 ⋯ Ckk]

(1)  

[Yi,Yi− 1,⋯,Y1] = ndgrid(Xi,Xi− 1,⋯,X1) (2)  

Zji = [Y1( : ),Y2( : ),⋯,Yi( : )] (3)  

SIj =
[
D1,D2,⋯,Dj

]
(4)  

where X1, X2, and Xi are the row matrices comprising wavelengths of the 
1st, 2nd, and ith bands of values, Amm, Bnn, and Ckk are the maximum 
wavelength values, ndgrid() is a multi-dimensional rectangular grid 
function, and Y1, Y2, …, Yi is an i-dimensional rectangular grid array 
generated through the ndgrid() function by copying the matrix of rows 
such as X1, X2, …, Xi (each grid value represents the wavelength value). 
Zji is a j row and i column matrix stacked and constructed by all 
wavelengths in each band of the SI. SIj is a column matrix formed by j 
spectral indices (D1, D2, …, Dj) constructed with different wavelength 
combinations; it comprises all possible wavelength combinations for one 
SI. 

3. Results and analysis 

3.1. Sensitivity analysis of hyperspectral features 

3.1.1. SI 
The sensitivity of the spectral index to RCC is listed in Table 2. The 

correlation between mSR705 and PSSRb and RCC was highest at > 0.6. 
In addition, MSRI, SR, MCARI1, MTVI1, PSSRa, and PRI were > 0.58, 
which also showed a high correlation. BRI1 showed the worst correla-
tion at 0.056. 

3.1.2. CWCs 
The sensitivities of CWCs to RCC are shown in Fig. 4. CWCs have the 

highest sensitivity in the green peak and red edge of the visible light 
band, and sensitive bands are also distributed in the near-infrared band 
that is sensitive to changes in cell structure and the shortwave infrared 
band that is sensitive to changes in water content. For example, in coif1 
(scale 5), the sensitivity was high, showing ranges of 453–462 nm, 
487–512 nm, 22–567 nm, 574–597 nm, 620–627 nm, 684–712 nm, 
725–773 nm, 1239– 1249 nm, 1259– 1276 nm, 1574– 1592 nm, and 
1726– 1738 nm (R2 > 0.4). The highest sensitivity was in the ranges 
593–596 and 601–609 nm (R2 > 0.6). 

3.2. OSI band change 

Using the Fp-SPA algorithm, TCARI and mSR705 were finally 
selected to build the TSI. The optimized spectral index wavelength 
showed signs of moving toward the short wavelength direction 
(Table 3). The wavelength changed from 700 nm to 690 nm, 670 nm to 
660 nm, and 550 nm to 540 nm, while its sensitivity increased by 0.104; 
mSR705: wavelength changed from 750 nm to 740 nm, 445 nm to 
435 nm, and 705 nm to 695 nm, and its sensitivity increased by 0.041. 

Fig. 3. Flow chart of hyperspectral feature extraction and estimation model 
establishment. 

Table 2 
Sensitivity of SI to RCC.  

SI R2 SI R2 SI R2 

RVI  0.505 RDVI  0.566 GRVI  0.469 
NDVI  0.490 REIP  0.134 GNDVI  0.416 
MTCI  0.417 PSSRa  0.584 ARVI  0.527 
MCARI1  0.585 PSSRb  0.609 IPVI  0.491 
TCARI  0.519 PSNDa  0.474 ARI  0.282 
PRI  0.583 PSNDb  0.528 SR  0.592 
SIPI  0.249 LIC1  0.474 mSR705  0.602 
TVI  0.467 LIC2  0.167 RGI  0.486 
VOG1  0.519 CTR2  0.466 ARI2  0.355 
VOG2  0.475 BRI1  0.056 GM1  0.512 
VOG3  0.485 BRI2  0.204 GM2  0.572 
NPCI  0.418 ARI1  0.496 MTVI1  0.585 
MSRI  0.592 mND705  0.563 DD  0.541 
BmSR  0.479 –  – –  –  
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3.3. Estimation of RCC 

3.3.1. Estimation of RCC in the total damage process 
The estimation model of RCC for the total process of damage based 

on TSI, OSI, bior1.5, coif1, db4, and sym3 as input variables are listed in 
Table 4, which shows only the results of the modeling of the four optimal 
mother wavelet bases; all results are also shown in Table S2. OSI showed 
the best estimation accuracy in the three models. In the SVMR model, 
OSI was higher by 0.077, 0.074, 0.014, 0.094, and 0.115 than those of 
TSI, bior1.5, coif1, db4, and sym3, respectively. Modeling of OSI was 
also relatively stable and second only to db4, but the estimation accu-
racy of db4 was very poor. In CWCs, the estimation performance of coif1 
was the best. The highest value (0.764) was shown by the Coif1-SVMR 
model. In summation, the model built based on OSI showed the best 
estimation effect as well as good accuracy and stability simultaneously, 

followed by CWCs and TSI. 
The three-model validation sets of OSI, TSI, and coif1 were used to 

perform a 1:1 straight-line fitting analysis to test the performances of the 
models (Fig. 5). The results show that the data points of all test sets were 
closely distributed near the fitting line. In PLSR, SVMR, and SMLR, OSI 
had the highest degree of fit, followed by TSI. For OSI, OSI-SVMR with 
the best estimation accuracy had the highest fitting effect, and the data 
points of the test set were more evenly distributed. 

3.3.2. Estimation of RCC at different damage levels 
To reveal the potential of the SI for estimating RCC at different levels 

of damage, TSI, OSI2, and coif1 were used to establish estimation 
models under mild, moderate, and severe damage levels. Results are 
shown in Table 5. At mild damage level, RA(2) values of OSI were higher 
by 0.139, 0.158, and 0.068 compared with those of TSI. At moderate 
damage level, OSI was higher by 0.135, 0.120, and 0.138. The severe 
damage level, OSI were higher by 0.110, 0.145, and 0.070. The esti-
mated performance of OSI and coif1 differed slightly at each level of 
damage. In the PLSR and SMLR models for mild damage and the PLSR 
model for moderate and severe damage, the RA(2) of OSI was higher 
than coif1. In other models, it was marginally lower than coif1. TSI, OSI, 
and coif1 provided the best estimation of RCC at the moderate damage 
level. In summary, the estimability of OSI was better than that of TSI and 
comparable to that of coif1. TSI, OSI, and coif1 showed the highest ac-
curacy in estimating RCC at the moderate level. Model validation sets of 
TSI, OSI, and coif1 were used to perform a 1:1 straight-line fitting 
analysis (Fig. 6) to test the performance of the model. The fit of OSI was 

Fig. 4. Sensitivities of the four continuous wavelet coefficients (CWCs) to relative chlorophyll content (RCC). Data with 36 mother wavelet bases of 4 wavelet 
coefficients on the scale of 21–210. For example, coif1 includes 21 (scale1), 22 (scale2) ….…..210 (scale10). 

Table 3 
Wavelengths of TSI and OSI.  

Before optimized After optimized 

SI Wavelength 
(nm) 

R2 SI Wavelength 
(nm) 

R2 

TSI TCARI 700, 670, 550 0.519 OSI TCARI 690, 660, 540  0.624 
mSR705 750, 445, 705 0.602 mSR705 740, 435, 695  0.643  

Table 4 
Estimation model of RCC for the total damage process.  

Hyperspectral features PLSR SVMR SMLR 

R2
A RMSE R2

A RMSE R2
A RMSE 

TSI  0.699  0.144  0.710  0.140  0.684  0.149 
OSI  0.776  0.124  0.781  0.123  0.776  0.124 
bior1.5  0.702  0.141  0.686  0.144  0.702  0.141 
coif1  0.763  0.140  0.764  0.137  0.763  0.140 
db4  0.682  0.121  0.670  0.122  0.682  0.121 
sym3  0.662  0.173  0.663  0.171  0.588  0.193  
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higher than that of TSI in all cases. The fit of OSI In the PLSR and SMLR 
models for mild and moderate damage, as well as in the SVMR model for 
severe damage, was marginally higher than that of coif1. Compared with 
mild and severe damage, TSI, OSI, and coif1 showed the best fit for 
moderate damage. The above characteristics were consistent with the 
accuracy of the corresponding chlorophyll content estimation model. 

4. Discussion 

The results of the sensitivity of TSI and CWC to RCC (Table 2 and 
Fig. 3) showed that bands with high sensitivity (R2 > 0.6) of mSR705, 
PSSRb, and coif1 (scale 5), such as 593–596 and 601–609 nm, were all in 
the visible light band, where various pigments are the main regulatory 
factors of the spectral response of plants, where the role of chlorophyll is 
particularly important. The plant cell structures of coniferous trees 
infested by pests are directly damaged due to overfeeding by larvae, 
resulting in a reduction in the number of green coniferous leaves and 
inhibited chlorophyll synthesis. Under different degrees of disaster, the 
position and slope of the red edge and green peak are sensitive to the 
change of RCC per unit area of plants and can effectively respond to 
plant stress (Li et al., 2015; He et al., 2018). The optimized mSR705 
adopts the wavelengths of 705 and 750 nm, far from the main absorption 
band of chlorophyll, thereby avoiding the interference of supersatura-
tion and maintaining the highest sensitivity to change in RCC 
(Schlemmer et al., 2013). The TCARI index is calculated using reflec-
tance at the minimum and maximum absorption bands of vegetation 
chlorophyll, which reduces canopy structure and soil background 
(Haboudane et al., 2002; Liao et al., 2013). The hyperspectral features 
composed of optimized mSR705 and TCARI consider the effects of 
canopy structure, soil background, and saturation conditions and are 

more sensitive and responsive to RCC changes. Considering the total 
process and different degrees of damage (Tables 4 and 5), the accuracies 
of the three OSI models are not only better than that of TSI but are also 
close to or even exceed those of CWCs. Therefore, this SI optimization 
and combination model can effectively extract the index sensitive to 
changes in RCC and compose SI features with a better estimation po-
tential, which can be further applied to estimate other physiological 
indicators of trees. TSI, OSI, and coif1 showed the highest estimation 
accuracy at a moderate degree of damage. During a pest outbreak, the 
internal biochemical parameters and external structure of trees would 
change with the severity of disaster (Cheng et al., 2014). 

In the case of a mild degree of damage, the RCC changes slightly, 
while in the case of moderate and severe degrees of damage, which is 
more conducive to capturing spectral information sensitive to changes in 
RCC, the RCC changes significantly. However, in case of a severe degree 
of damage, the RCC remains at a very low level, and the rate of leaf loss 
reaches the highest (Huang et al., 2019). By contrast, the interference of 
supersaturation and soil background is small under conditions involving 
moderate damage, which is conducive to the estimation of RCC. At a 
moderate degree of damage, the accuracy of the PLSR model of coif1 was 
lower and higher than OSI in SVMR and SMLR models, respectively. 
CWCs have excellent information extraction ability and can capture 
changes in forest biochemical indicators; therefore, they have been used 
in the estimation of RCC, nitrogen, water content, and other biochemical 
components (Song et al., 2011; Cheng et al., 2014). Bior1.5, which 
performed well in the RCC estimation model for the total damage pro-
cess, also showed a high estimation accuracy in studies of forest water 
content conducted by Fang and Ju (2015) and Cheng et al. (2011). This 
study did not achieve good estimation accuracy under mild and severe 
damage conditions. In future research, structural parameters, such as the 

Fig. 5. 1:1 straight-line fitting based on the estimation model of the validation set for the total damage process.  

Table 5 
Estimation of RCC for different damage levels.  

Damage level Hyperspectral features PLSR SVMR SMLR 

R2
A RMSE R2

A RMSE R2
A RMSE 

Mild TSI  0.414  0.282  0.454  0.212  0.357  0.259 
OSI  0.553  0.148  0.612  0.154  0.425  0.175 
coif1  0.549  0.147  0.631  0.165  0.416  0.127 

Moderate TSI  0.552  0.128  0.591  0.195  0.411  0.189 
OSI  0.688  0.133  0.710  0.130  0.549  0.147 
coif1  0.677  0.126  0.732  0.137  0.552  0.103 

Severe TSI  0.407  0.222  0.425  0.177  0.321  0.192 
OSI  0.517  0.142  0.570  0.132  0.391  0.176 
coif1  0.526  0.161  0.544  0.160  0.402  0.139  
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cell diameter of needles can be obtained by combining hyperspectral 
and LiDAR data (Lin et al., 2016; Rahman et al., 2022), and used to 
improve the estimation accuracy of RCC under mild and severe damage 
conditions. 

5. Conclusions 

In this study, we used TSI, OSI, and CWCs to estimate the RCC cor-
responding to total damage as well as to different degrees of damage. 
The bands corresponding to the RCC response were distributed more in 
the green light region and the red edge band. 

Regarding the total process, the estimation capability of OSI was 
significantly improved compared with that of TSI, and better than that of 
CWCs. Regarding different degrees of damage, the estimation perfor-
mance of OSI was close to or even better than that of coif1. TSI, OSI, and 
coif1 showed the highest estimation accuracy at moderate degrees of 
damage. Changing one or more wavelength positions of SI, allowed the 
index to be better adjusted to any specific absorption region, which 
improved the estimation performance of TSI, suggesting a new method 
that involves using SI to estimate RCC and other forest biochemical 

components. Notably, forest diseases and insect pests have the charac-
teristics of large outbreak areas and fast spread, and the application of 
drones and aerospace remote sensing image data is more widespread 
(Hunt and Rondon, 2017; Tane et al., 2018; Li et al., 2018). Using 
wavelet coefficients to carry out relevant research will generate inten-
sive calculations, and the data processing and information extraction 
process is also relatively cumbersome. In contrast, the optimized spec-
tral index can reach a similar estimation accuracy to that of wavelet 
coefficients, but it is more convenient and faster to use. This study 
optimized the spectral indices based on data obtained from handheld 
hyperspectral instruments. The optimized indices can be applied to UAV 
hyperspectral data, greatly facilitating large-scale research. However, 
some band information for optimized indices cannot be corresponded 
one-to-one in hyperspectral satellites, resulting in the inability of the 
optimized indices to be directly used in some satellite data. Therefore, 
we intend to further explore the potential of Fp-SPA algorithm in 
combining spectral indices to improve the accuracy of estimating chlo-
rophyll content using satellite data by optimizing the combination of 
spectral indices. This study will help to facilitate future research on RCC 
remote sensing monitoring at a large regional scale based on 

Fig. 6. 1:1 straight-line fitting based on the estimation model of the validation set for different damage levels.  
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multivariate hyperspectral data and plays an important part in the early 
identification and severity estimation of the locust pest, E. Jacobson 
Djak. Our findings can help local forestry departments to efficiently 
perform pest control work. 
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