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Abstract: The aim of this study is to extract land cover information 

from the high resolution satellite image and check the reliability to 

update thematic layers in a geographical information system (GIS). 

For the extraction of information from the selected remote sensing 

(RS) data set, a refined maximum likelihood classification (MLC) 

method that incorporates both spectral and spatial characteristics is 

constructed. 

 

1. Introduction 
 

Until the launch of very high resolution satellites such as Ikonos, 
Quickbird and WorldView, space images had been mainly used for a 
land cover mapping at regional or national scales, because the available 
high resolution satellite data sets (e.g., Landsat and SPOT) could fulfill 
the mapping conditions of up to  a regional level. It is known that a 
scale of the thematic information to be extracted from digital RS data is 
dependent upon a spatial resolution of the acquired image (Wilson et al. 
2011). To get an acceptable accuracy for a selected map scale using 
optical images, it is desirable to include sufficient number of pixels per 
centimeter. However, this number may change depending on the 
purposes of the study as well as the requirements of conducted projects 
(Amarsaikhan and Sato 2003). For example, for soil and vegetation 
mapping, there could be needed only 20 pixels per centimeter, while for 
urban area mapping, one might need at least 50 pixels per centimeter. 

 

The traditional standard high resolution satellite data sets allow the 
mapping specialists to map the natural and man made features usually 
at a class level and it is very difficult to define the individual objects on 
such images (Amarsaikhan 2002). However, the current very high 
resolution satellite data sets allow the users of spatial information to 
map any feature at an object level (Boggs 2010). This means, by the 
use of the present satellite RS images, it is possible to produce all scale 
maps and update the layers of a GIS at all levels. The database level in 
a GIS cannot be directly related to the map scales, because different 
GIS users use different map scales for determination of the levels. 
However, as all spatial databases are based on map scales there could 
be a relationship between the levels and scales as mentioned above 
(Amarsaikhan 2002). 



 

Over the years, for the extraction of thematic information from RS 

images at national, regional and local levels, different combinations of 

image processing techniques have been used. One of the most popular 

applications has been the production of land cover maps. The 

techniques used for generation of such maps are based on digital 

methods of classification which mainly assign the pixels to class labels 

based on their spectral and contextual properties. The widely used 

methods are parametric and non-parametric methods, neural networks as 

well as knowledge-based classifications (Gamba and Houshmand 2001, 

Linderman et al. 2004, Amarsaikhan et al. 2007, Gomez and Martin 

2011, Laurin et al. 2013). 

 

The aim of this study is to extract land cover information from the 

high resolution RS image and check the reliability to update urban 

GIS layer. For the identification of available urban land-cover types a 

refined MLC technique based on both spectral and spatial 

characteristics, has been constructed. The result of the constructed 

method was compared with result of a standard statistical MLC and it 

demonstrated higher accuracy. 
 

2. Test site and data sources 

 

As a test site, Baga toiruu area situated in central part of Ulaanbaatar, 
the capital city of Mongolia has been selected. The Baga toiruu is the 
city business district of Ulaanbaatar city where different government, 
educational, cultural and commercial organizations are located. Besides 
the Central Government, Parliament and headquarters of major 
political parties, the Baga toiruu contains many offices of different 
ministries, major government organizations, bank headquarters, state 
universities, diplomatic and international organizations as well as 
theatres and museums (Chinbat 2006). The location of the Baga toiruu 
area represented in a panchromatic Quickbird image of 2011 is shown 
in figure 1. 

 

As the RS data source, multichannel Landsat ETM+ data set acquired 
in June 2011 has been used. The Landsat ETM+ data has seven 
multispectral bands (B1: 0.45–0.52μm, B2: 0.53–0.61μm, B3: 0.63–
0.69μm, B4: 0.78–0.90μm, B5: 1.55–1.75μm, B6: 10.40–12.50μm and 
B7: 2.09–2.35μm) and one panchromatic band (0.52–0.90μm). In case 
of the multispectral data, a spatial resolution is 28.5m for the reflective 
bands, while it is 60m for the thermal band. Compared to the 



multispectral bands, a panchromatic image has a higher spatial 
resolution of 14m. In the current study, beside the panchromatic band, 
multispectral channels 2,3,4,5,7 have been used. In addition, a 
topographic map of 1984, scale 1:50,000 as well as GIS layer created 
on the basis of the topographic maps, were available. 

 

 
 

Figure 1. The test area represented in a Quickbird image of 2011. 

 

3. Radiometric correction and georeferencing of the RS images 

 

At the beginning, all the available images were thoroughly analyzed in 

terms of radiometric quality and geometric distortion. The first band 

of the Landsat ETM+ data had high atmospheric noise and it was 

decided to exclude it from the further analysis. In order to extract 

geometrically accurate thematic information, thorough georeferencing 

should be applied to the original RS image. The panchromatic and 

multispectral bands of the Landsat ETM+ data were georeferenced to 

a Gauss-Kruger map projection using a topographic map of 1984, 

scale 1:50,000. The GCPs have been selected on well defined sites 



and in total 9 regularly distributed points were selected. For the 

transformation, a linear transformation and nearest neighbour 

resampling approach have been applied and the related RMS errors 

were 0.94 pixel and 0.98 pixel, accordingly. In both cases, an image 

was resampled to a pixel resolution of 14m. 

 

4. Refined MLC method 

 

Generally, it is very important to design a suitable image processing 

procedure in order to successfully classify any RS data into a number 

of class labels. The effective use of different features and the selection 

of a reliable classification technique can be a key implication for the 

improvement of classification accuracy (Lu and Weng, 2007). In this 

study, for the classification of urban land cover types, a refined MLC 

algorithm has been constructed. The MLC is the most widely used 

statistical classification technique, because a pixel classified by this 

method has the maximum probability of correct assignment (Erbek et 

al. 2004). The decision rule assuming Bayes' rule can be written as 

follows: 

 

 P(Ci|x) = P(x|Ci)*P(Ci)/P(x)                           

 

where P(Ci|x)-posterior probability, P(x|Ci)-conditional probability, 

P(Ci)-prior probability, P(x)-probability of finding a pixel from any 

class. The actual classification is performed according to P(Ci|x) > 

P(Cj|x) for all  j#i. 

 
In the present study, for all classes equal prior probabilities have been 
assigned. Unlike the traditional MLC, the constructed classification 
algorithm uses spectral and spatial thresholds defined from the local 
knowledge. The local knowledge was defined on the basis of the 
spectral variations of the land surface features on the color images. It is 
clear that a spectral classifier will be ineffective if applied to the 
statistically overlapping urban classes, because they have very similar 
spectral characteristics. For such spectrally mixed classes, 
classification accuracies should be improved if both spectral and spatial 
properties of the classes of objects could be incorporated into the 
classification criteria. The spectral thresholds use the upper and lower 
limits of standard deviations (or values falling mainly within minimum 
and maximum) of training samples, while the spatial thresholds use a 
polygon boundary to separate the overlapping classes. When thresholds 



apply only the pixels falling within the threshold boundary are used for 
the classification. In that case, the likelihood of the pixels to be 
correctly classified will significantly increase, because the pixels 
belonging to the class that overlaps with the class to be classified using 
the threshold boundary are temporarily excluded from the decision 
making process. In such a way, the image can be classified several 
times using different threshold boundaries and the results can be 
merged (Amarsaikhan et al. 2006). 

 

The selected site is characterized by such spectral classes as builtup 
area (mainly buildings), open area (mainly roads and pedestrian 
walking areas), central square and vegetation (trees and grass). The 
Landsat ETM+ data of the selected part of the capital city is shown in 
figure 2a. Generally, in the classification process, it is desirable to 
include only the features in which the signatures of the selected classes 
are highly separable from each other in a multidimensional feature 
space. To extract reliable features, a principal component analysis 
(PCA) has been performed to the multispectral data sets. The PCA is a 
statistical technique that transforms a multivariate data set of 
intercorrelated variables into a set of new uncorrelated linear 
combinations of the original variables, thus generating a new set of 
orthogonal axes. In digital image processing community, the most 
common understanding of the PCA is that it is also a data compression 
technique used to reduce the dimensionality of the multidimensional 
datasets (ERDAS 1999). The result of the PCA applied to the Landsat 
ETM+ image is shown in table 1. 

 

Table 1. Principal component coefficients from panchromatic and 
five multispectral bands of the ETM. 

 PC1 PC2 PC3 PC4 PC5 PC6 

PAN -0.42 -0.18 -0.41 0.79 0.05 0.01 

ETM2 -0.39 0.36 -0.31 -0.24 -0.72 0.14 

ETM3 -0.43 0.51 -0.20 -0.26 0.66 -0.04 

ETM4 -0.39 -0.70 -0.18 -0.46 0.02 -0.32 

ETM5 -0.43 -0.19 0.49 -0.03 0.06 0.72 

ETM7 -0.38 0.18 0.64 0.19 -0.15 -0.58 

Eigenvalue 3218.3 64.5 37.3 15.7 6.2 1.9 

Variance (%) 96.24 1.92 1.11 0.46 0.18 0.09 

 

As seen from table 1, in the PC1 that contains 96.24% of the overall 
variance, all bands have negative loadings. In the PC2 that contains 
1.92% of the overall variance, red band has moderately high loading, 
but near infrared band has a high negative loading. In the PC3 that 



contains 1.11% of the overall variance, second middle infrared band 
has a high loading. Here, panchromatic and second middle infrared 
bands have  moderately high negative and positive loadings, too. 
Moreover, as seen from the table 1, in the PC4 that contains only 
0.46% of the overall variance, panchromatic band has a very high 
loading.  

 

 
 

Figure 2. a) Landsat ETM+ image of the test area, b) A topographic 

map of the test area, c) The result of the MLC, d) The result of the 

refined method. (1-vegetation, 2-builtup area, 3-central square, 4-open 

area). 
 

Meanwhile, all other bands have negative loadings or almost no 
influence on it. The inspection of the last two PCs indicated that they 
contained noise from the total data set. As could be seen, the first 3 PCs 
contain over 99% of the overall variance, and one could think that they 



might have been sufficient for the feature determination. However, 
visual inspection of the PC 4 indicated that it included useful 
information related to the image texture. Therefore, for the final 
features, PC1, PC2, PC3 and PC4 have been chosen. 

 

To apply a classification decision rule, initially, the training signatures 
have to be selected. In the present study, to define the training 
signatures from the PCA image, several areas of interest (AOI)s 
representing the selected four classes have been chosen through 
accurate analysis based on local knowledge. The separabilities of the 
training signatures were firstly checked on the feature space images 
and then evaluated using Jeffries-Matusita (JM) distance. Then the 
samples which demonstrated the greatest separabilities were chosen to 
form the final signatures. The final signatures included about 50-177 
pixels. 

 

In general, it is very difficult to separate the classes if they have the 
same or very similar spectral characteristics. As we have urban 
environment, there are high mixtures among the classes except the 
green vegetation. When the classes overlap in a multidimensional 
feature space, the usage of thoroughly defined spectral and spatial 
thresholds can play an important role for separation of the overlapping 
classes. In the present study, as the spectral parameters, the values 
falling mainly within minimum and maximum of each class defined 
from the selected signatures have been selected. The pixels falling 
outside of these spectral parameters were temporarily identified as 
unknown classes and further classified using the constraints in which 
different spatial thresholds were defined. The spatial thresholds were 
determined using the polygon boundaries defined on the basis of a GIS 
layer (the layer was created from a topographic map of 1:50,000 shown 
in figure 2b).  

 

For the accuracy assessment of the classification result, the overall 

performance has been used. This approach creates a confusion matrix 

in which the selected reference pixels are compared with the classes in 

the classified image and as a result, an accuracy report is generated 

indicating the percentages of the correspondence (ENVI 1999). As 

ground truth information, for each class several regions containing 

418 purest pixels have been selected. The result of the MLC method is 

shown in figure 2d. The confusion matrix indicated an overall 

accuracy of 89.93%. To compare the performances of the developed 

algorithm and a standard method, the same set of features were 

classified using a standard statistical MLC. The image classified by 



the MLC method is shown in figure 2c. As could be seen from the 

figure 2c, the classified image has high mixtures of all classes. The 

confusion matrix indicated an overall accuracy of 78.09%. 
 

5. Update of GIS Layer 

 

Generally, a GIS can be considered as a spatial decision-making tool. 

For any decision-making, a GIS uses digital spatial information stored 

within its database. The power of GIS systems comes from the ability 

to relate different information in a spatial context and to reach a 

conclusion about this relationship. Therefore, current GISs are being 

widely used for urban planning and management. For an efficient 

decision-making, one needs accurate and updated spatial information. 

In urban context, spatial information can be collected from a number 

of sources such as city planning maps, topographic maps, digital 

cartography, thematic maps, global positioning system, aerial 

photography and space RS. Of these, only RS can provide real-time 

information that can be used for the real-time spatial analysis 

(Amarsaikhan and Saandar 2011). 

 

In the present study, it is possible to assume that there is an operational 

urban GIS that stores historical thematic layers and there is a need to 

update land cover layers. As seen from the classification results shown 

in figure 2c-d, the result of the refined method looks better than that of 

the standard method, however, it contains large uncertainty in terms of 

delineation of individual objects. In general, urban areas comprise 

diverse environment containing a variety of different features and 

objects having very similar spectral characteristics and it is not easy to 

separate them even using sophisticated techniques. In the selected test 

area, the classes: built-up area, open area and central square have very 

similar spectral characteristics and there are different mixtures of 

specifically built-up area and open area classes on the final classified 

image. Therefore, this result cannot be considered as reliable and 

surely cannot be used for update of urban GIS layer. 
 

6. Conclusions 

The aim of this study was to extract information from the high 

resolution satellite image and check the reliability to update GIS 

layers. As a test site, central part of Ulaanbaatar, the capital city of 

Mongolia was chosen. For the information extraction from the 



selected RS data set, a refined MLC method based on both spectral and 

spatial thresholds was constructed. The result of the constructed 

technique was compared with result of a standard statistical MLC and 

it demonstrated higher accuracy. Overall, the study indicated that the 

information extracted from the high resolution satellite image contains 

large uncertainty in terms of delineation of individual objects and may 

not be used for update of a GIS layer specifically in urban context. 
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