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The two objectives of this study are to compare the performances of different
data fusion techniques for the enhancement of urban features and subsequently
to improve urban land cover types classification using a refined Bayesian
classification. For the data fusion, wavelet-based fusion, Brovey transform,
Elhers fusion and principal component analysis are used and the results are
compared. The refined Bayesian classification uses spatial thresholds defined
from local knowledge and different features obtained through a feature derivation
process. The result of the refined classification is compared with the results of a
standard method and it demonstrates a higher accuracy. Overall, the research
indicates that multi-source information can significantly improves the interpre-
tation and classification of land cover types and the refined Bayesian classifica-
tion is a powerful tool to increase the classification accuracy.

Keywords: data fusion; refined Bayesian classification; multi-source; urban;
feature derivation

1. Introduction

In recent years, very high spatial resolution optical and microwave remote sensing (RS)
data have become increasingly available from space platforms and this makes it possible to
extract detailed real-time urban land cover information from such data (van Genderen
1989). As it is well known, optical data contain information on the reflective and emissive
characteristics of the Earth surface features, while the synthetic aperture radar (SAR)
data contain information on the surface roughness, texture and dielectric properties
of natural and man-made objects. Over the past decade, the integrated features of these
multi-source data sets have been efficiently used for an improved land-cover classification.
It is evident that a combined use of the optical and SAR images will have a number of
advantages because a specific feature, which is not seen on the passive sensor image may be
observable on the microwave image and vice versa because of the complementary
information provided by the two sources (Amarsaikhan et al. 2004, 2007). In addition,
the fusion of SAR and optical imagery has a number of additional benefits such as
to sharpen images, improve geometric corrections, provide stereo-viewing capabilities for
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stereophotogrammetry, enhance certain features not visible in either of the single
data alone, complement data sets for improved classification, detect changes using
multi-temporal data, substitute missing information (e.g. clouds-VIR, shadows-SAR)
in one image with signals from another sensor image, replace defective data and for urban
change detection (Zeng et al. 2010).

Since the review paper on image fusion by Pohl and van Genderen (1998), image
data fusion has become a much valuable and popular approach for the integration of
multi-source satellite RS data sets. It has been found that the images acquired at different
portions of electro-magnetic spectrum provide unique information when they are
integrated. Now, image fusion based on the integration of optical and microwave data
sets is being efficiently used for the interpretation, enhancement and analysis of different
land surface features. Many authors have proposed and applied different techniques to
combine optical and SAR images in order to enhance various features and they all judged
that the results from the fused images were better than the results obtained from the
individual images (Harris et al. 1990, Yesou et al. 1993, Wang et al. 1995, Pohl and
van Genderen 1998, Ricchetti 2001, Amarsaikhan and Douglas 2004, Ehlers et al. 2008).

Multispectral RS data sets have been widely used for land cover mapping. For the
generation of land cover information, diverse classification methods have been applied.
The traditional methods mainly involved supervised and unsupervised methods and hence,
a great number of techniques have been developed (Amarsaikhan and Ganzorig 1997).
Unlike single-source data, data sets from multiple sources have proved to offer better
potential for discriminating between different land cover types. Many authors have
assessed the potential of multi-source images for the classification of different land cover
classes (Munechika et al. 1993, Serpico and Roli 1995, Benediktsson et al. 1997,
Hegarat-Mascle et al. 2000, Amarsaikhan and Douglas 2004, Amarsaikhan et al. 2007).
In RS applications, the most widely used multi-source classification techniques are
statistical methods, Dempster–Shafer theory of evidence, neural networks, decision
tree classifier and knowledge-based methods (Solberg et al. 1996, Franklin et al. 2002,
Amarsaikhan et al. 2007).

Urban areas are complex and diverse in nature, and many features have similar
spectral characteristics. In order to separate urban classes successfully, reliable features
derived from different sources as well as an efficient classification technique should be
selected. The main objectives of this study are as follows:

(1) to compare different data fusion techniques for the enhancement of spectral
variations of different urban features, later to be used for training sample selection,
and

(2) to classify urban land cover types subsequently using a refined Bayesian
classification. For the actual analysis, high-resolution TerraSAR and QuickBird
images of the urban area in Mongolia were used. The analysis was carried out
using ERDAS Imagine 9.1 and ENVI 4.3.

2. Test site

As a test site, Ulaanbaatar, the capital city of Mongolia has been selected. Ulaanbaatar is
situated in the central part of Mongolia, on the Tuul River, at an average height of 1350m
above sea level and currently has about one million inhabitants. Although, the city is
extended from the west to the east about 30 km, and from the north to the south about
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20 km, the study area chosen for the present study covers a very small portion (it is about
3.15 km from the west to the east and about 2.15 km from the north to the south). As the
images have very high spatial resolution, it is possible to define such classes as built-up
area, ger area (Mongolian traditional dwelling), open area, road, central squire and
snow-ice. The built-up area includes buildings of different sizes, while ger area includes
mainly gers surrounded by fences. Open area includes bare soil, pedestrian walking
areas and sparsely distributed non-green vegetation (because the image was acquired
in March 2008 and in this time of the year vegetation is not yet green in Mongolia).
The road class includes various asphalt roads of different sizes and scales. The central
squire represents the squire located in the heart of Ulaanbaatar city. The snow-ice class
includes water bodies in a solid form. Figure 1 shows the QuickBird image of the test site
and some examples of its land cover.

3. Data sources

In this study, for the urban land cover studies, a QuickBird image of 16 March 2006 and
a TerraSAR-X image of 20 March 2008 have been used. The QuickBird data have
four multispectral bands (B1: 0.45–0.52 mm, B2: 0.52–0.60mm, B3: 0.63–0.69 mm and B4:
0.76–0.90 mm) and one panchromatic band (Pan: 0.45–0.9 mm). The spatial resolution
is 0.61m for the panchromatic image, while it is 2.4m for the multispectral bands.
In this study, green, red and near infrared bands have been used. TerraSAR-X is a German
Earth observation satellite carrying a cloud-piercing, night-vision radar, which is designed

Figure 1. 2006 QuickBird image of the selected part of Ulaanbaatar. (1) built-up area; (2) ger area;
(3) open area; (4) central squire; (5) roads; and (6) snow-ice.
Note: The size of the displayed area is about 3.15 km� 215 km.
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to create the most precise maps and images ever produced by a civilian space radar system.
It images the Earth’s surface at a rate of one million square kilometres a day and provides
information at various spatial resolutions. The characteristics of the TerraSAR-X data
used in the current study are shown in Table 1.

4. Co-registration of optical and SAR images

In this study, the intensity images of QuickBird and TerraSAR-X have been used.
Therefore, there was no need to apply special procedure to extract grey-scale images from
the SAR images. Generally, in order to perform accurate data fusion, high geometric
accuracy between the images is needed. As a first step, the QuickBird image was
georeferenced to a Gauss–Kruger map projection using nine ground control points (GCPs)
defined from a field survey. The GCPs have been selected on clearly delineated crossings
of roads, streets and city building corners. For the transformation, a second-order
transformation and nearest-neighbour resampling approach were applied and the related
root mean square error (RMSE) was 1.06 pixels. Then, the TerraSAR image was
geometrically corrected based on the georeferenced QuickBird image. In order to correct
the SAR image, 15 more regularly distributed GCPs were selected from different parts
of the image. For the actual transformation, a second-order transformation was used.
As a resampling technique, the nearest-neighbour resampling approach was applied and
the related RMSE was 1.48 pixels. As both optical and microwave images had a very high
spatial resolution, the errors of less than 1.5m were considered as acceptable for further
studies.

5. Speckle suppression of the TerraSAR image

As microwave images have a granular appearance due to the speckle formed as a result
of the coherent radiation used for radar systems; the reduction of the speckle is a very
important step in further analysis. The analysis of the radar images must be based on the
techniques that remove the speckle effects while considering the intrinsic texture of the
image frame (Ulaby et al. 1986, Amarsaikhan and Douglas 2004, Serkan et al. 2008).
In this study, five different speckle suppression techniques such as local region, median,
lee-sigma, frost and gamma map filters (ERDAS 1999) of 5� 5 and 7� 7 sizes were
compared in terms of delineation of urban features and texture information. After visual
inspection of each image, it was found that the 5� 5 gamma map filter created the best
image in terms of delineation of different features as well as preserving content of texture
information. In the output image, speckle noise was reduced with very low degradation
of the textural information.

Table 1. The characteristics of the
TerraSAR-X data.

Parameter X-band

Polarisation HH and VV
Frequency 9.6GHz
Wavelength 3.1 cm
Spatial resolution 1.0m
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6. Image fusion

The concept of image fusion refers to a process that integrates different images

from different sources to obtain more information from a single, more complete image,

considering a minimum loss or distortion of the original data. In other words, the image

fusion is the integration of different digital images in order to create a new image and

obtain more information than can be separately derived from any of them (Pohl and

van Genderen 1998, Ricchetti 2001, Amarsaikhan et al. 2009). In the present study of

urban areas, the SAR image provides structural information about buildings and street

alignment due to the double bounce effect, while the optical image provides the

information about the spectral variations of different urban features. Image fusion can be

performed at pixel, feature and decision levels (Abidi and Gonzalez 1992, Pohl and

van Genderen 1998). In this study, data fusion has been performed at a pixel level and the

following techniques were applied:

(1) wavelet-based fusion,
(2) Brovey transform,
(3) Elhers fusion,
(4) principal component analysis (PCA).

Each of these techniques is briefly discussed below.

Wavelet-based fusion: The wavelet transform decomposes the signal based on elementary

functions so called the wavelets. By using this, an image is decomposed into a set of

multi-resolution images with wavelet coefficients. For each level, the coefficients contain

spatial differences between two successive resolution levels. In general, a wavelet-based

image fusion can be performed by either replacing some wavelet coefficients of the

low-resolution image with the corresponding coefficients of the high-resolution image or

by adding high resolution coefficients to the low-resolution data (Pajares and Cruz 2004).

In this study, the first approach, which is based on bi-orthogonal transforms, has been

applied.

Brovey transform: This is a simple numerical method used to merge different digital data

sets. The algorithm based on a Brovey transform uses a formula that normalises

multispectral bands used for a red, green, blue colour display and multiplies the result

by high-resolution data to add the intensity or brightness component of the image

(Vrabel 1996). For the Brovey transform, the bands of QuickBird data were considered as

the multispectral bands, while the HH-polarisation of TerraSAR image was considered

as the multiplying panchromatic band.

Elhers fusion: This is a fusion technique used for the spectral characteristics preservation

of multi-temporal and multi-sensor data sets. The fusion is based on an IHS transfor-

mation combined with filtering in the Fourier domain and the IHS transform is used for

optimal colour separation. As the spectral characteristics of the multispectral bands

are preserved during the fusion process, there is no dependency on the selection or order

of bands for the IHS transform (Ehlers 2004, Ehlers et al. 2008).

PCA: The most common understanding of the PCA is that it is a data compression

technique used to reduce the dimensionality of the multidimensional data sets (Richards

and Xia 1999). It is also helpful for image encoding, enhancement, change detection and

multi-temporal dimensionality (Pohl and van Genderen 1998). PCA is a statistical
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technique that transforms a multivariate data set of inter-correlated variables into a set
of new uncorrelated linear combinations of the original variables, thus generating a new
set of orthogonal axes. In this study, the PCA has been performed using all available bands
and the results are shown in Table 2.

As can be seen from Table 2, PC1 and PC2 are dominated by the variance of VV
polarisation of TerraSAR, whereas infrared band of QuickBird has a high negative
loading in PC1 and the second highest loading in PC2. Although, PC3 contained 2.81% of
the overall variance and had high loadings of red band of QuickBird and HH polarisation
of TerraSAR, visual inspection revealed that it contained less information related to the
selected classes. However, visual inspection of PC4 that contained only 1.57% of the
overall variance, in which green band had a very high loading, revealed that this feature
contained useful information related to the urban texture. The inspection of the PC5
indicated that it contained noise from the total data set.

In order to obtain a good colour image that can illustrate spectral and spatial
variations of the classes in the selected image frame, different band combinations have
been used. Most of the methods created good images on the basis of visual interpretation.
The images created by the wavelet-based fusion, Brovey transform and Elhers fusion
looked much similar to the original QuickBird image, but they somehow reflected the
characteristics of the SAR image. Although, these images looked much similar to one
another, detailed analysis of each image revealed that the Brovey transformed image gave
a superior image in terms of the spatial separation between different objects and classes.
Compared to the Brovey transformed image, the images obtained by the other two
methods contained speckle noise of the SAR image though they clearly described
individual objects. The PC image demonstrated very much the characteristics of both
optical and radar images because of their high loadings in the selected PCs. Figure 2 shows
the comparison of the images obtained by different fusion methods.

7. Classification of the images

7.1 Derivation of features and standard Bayesian classification

Initially, in order to increase the spatial homogeneity of the data, to the TerraSAR image,
a 3� 3 average filtering was applied. Then, to derive texture features from the multi-source
images, contrast, entropy and dissimilarity measures (using a 15� 15 window size) have
been applied and the results were compared. The bases for these measures are the
co-occurrence measures that use a grey-tone spatial dependence matrix to calculate texture

Table 2. Principal component coefficients from TerraSAR and QuickBird
images.

PC1 PC2 PC3 PC4 PC5

TerraSAR HH 0.07 0.07 0.57 0.58 0.56
TerraSAR VV 0.66 0.73 �0.06 �0.05 �0.05
QuickBird B2 0.00 0.00 �0.35 0.8 �0.47
QuickBird B3 �0.04 0.04 0.73 �0.06 �0.67
QuickBird B4 �0.73 0.67 �0.04 0.01 0.04
Eigenvalue 11,892.9 6156.2 532.3 297.1 33.4
Variance (%) 62.88 32.55 2.81 1.57 0.19
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values, and the matrix shows the number of occurrences of the relationship between a pixel
and its specified neighbour (ENVI 1999). The contrast measure indicates how most
elements do not lie on the main diagonal, whereas, the entropy measures the randomness
and it will have its maximum when all elements of the co-occurrence matrix are the same.
The dissimilarity measure indicates how different the elements of the co-occurrence matrix
are from each other (Lee et al. 2004). By applying these measures, initially 15 features have
been derived, but after thorough checking of each individual feature only four features,
including the results of the entropy measure applied to HH polarisation image of
TerreaSAR and infrared band of QuickBird, and the results of the dissimilarity measure
applied to VV polarisation image of TerreaSAR and infrared band of QuickBird, were
selected.

To define the sites for the training signature selection from the multi-sensor images,
two to four areas of interest (AOI) representing the available six classes (built-up area,
ger area, open area, road, central squire and ice) have been selected through the analysis
of fused images. As the data sources included both optical and SAR features, the fused
images were very useful for the determination of the homogeneous AOI as well as for the
initial intelligent guess of the training sites. The separability of the training signatures was
first checked in feature space and then evaluated using Jeffries–Matusita distance
(Table 3). The values of Jeffries–Matusita distance range from 0 to 2.0 and indicate
how well the selected pairs are statistically separate. The values greater than 1.9 indicate

Figure 2. Comparison of the fused images: (a) the image obtained by wavelet-based fusion; (b)
Brovey transformed image; (c) the image obtained by Elhers fusion; and (d) PC image (red¼PC1,
green¼PC2, blue¼PC3).
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that the pairs have good separability (ENVI 1999, ERDAS 1999). After the investigation,

the samples that demonstrated the greatest separability were chosen to form the final

signatures. The final signatures included about 3415–10,5343 pixels. For the classification,

the following feature combinations were used:

(1) The original spectral bands of the QuickBird data.
(2) The HH and VV polarisation components of TerreaSAR and original spectral

bands of the QuickBird data.
(3) Multiple bands including the original TerreaSAR and QuickBird images as well as

four other derivative bands obtained from texture measures.
(4) The PC1, PC2, PC3 and PC4 of the PCA (PCA was performed using nine bands

including the original TerreaSAR and QuickBird images as well as four texture

features and, the first four PCs included 99.9% of the overall variance).

For the actual classification, standard Bayesian maximum likelihood classification

(MLC) has been used assuming that the training samples have the Gaussian distribution

(Mather 1999). TheMLC is themost widely used statistical classification technique, because

a pixel classified by this method has the maximum probability of correct assignment (Erbek

et al. 2004). The decision rule assuming Bayes’ rule can be written as follows:

PðCijxÞ ¼ PðxjCiÞ � PðCiÞ=PðxÞ

where P(Ci|x) is the posterior probability, P(x|Ci) the conditional probability, P(Ci) the

prior probability and P(x) the probability of finding a pixel from any class. The actual

classification is performed according to P(Ci|x)4P(Cj|x) for all j 6¼ i.
In this study, for the available classes, as each of them has different areas, the following

prior probabilities have been used:

P(built-up area)¼ 0.25,
P(ger area)¼ 0.2,
P(open area)¼ 0.2,
P(road)¼ 0.15,
P(central squire)¼ 0.1,
P(ice)¼ 0.1.

As the built-up area, ger area and open area have larger areas in the image frame than

the other classes, to these classes higher prior probabilities were assigned. To increase the

reliability of the classification, to the initially classified images, a fuzzy convolution with

a 5� 5 size window was applied. The fuzzy convolution creates a thematic layer by

Table 3. The separabilities measured by Jeffries–Matusita distance.

Built-up area Ger area Open area Roads Squire Snow

Built-up area 0.000 0.823 1.308 1.023 1.697 1.901
Ger area 0.823 0.000 0.967 1.659 1.960 1.904
Open area 1.308 0.967 0.000 1.801 1.968 1.992
Roads 1.023 1.659 1.801 0.000 1.431 1.968
Squire 1.697 1.960 1.968 1.431 0.000 1.975
Snow-ice 1.901 1.904 1.992 1.968 1.975 0.000
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calculating the total weighted inverse distance of all the classes in a determined window
of pixels and assigning the centre pixel the class with the largest total inverse distance
summed over the entire set of fuzzy classification layers, i.e. classes with a very small
distance value will remain unchanged while the classes with higher distance values might
change to a neighbouring value if there are a sufficient number of neighbouring pixels with
class values and small corresponding distance values (ERDAS 1999). The visual inspection
of the fuzzy convolved images indicated that there are some improvements on the borders
of the neighbouring classes that significantly influence the separation of the decision
boundaries in multidimensional feature space. The final classified images are shown
in Figure 3(a)–(d). As seen from Figure 3(a)–(d), the classification result of the QuickBird
image gives the worst result, because there are high overlaps among classes: built-up area,
ger area and open area. However, these overlaps decrease on other images for the
classification of which SAR and optical bands as well as other derivative features have
been used. As could be seen from the overall classification results (Table 4), although
the combined use of optical and microwave data sets produced a better result than the
single-source image, it is still very difficult to obtain a reliable land cover map by the use
of the standard technique, specifically on decision boundaries of the statistically
overlapping classes.

For the accuracy assessment of the classification results, the overall performance
has been used. This approach creates a confusion matrix in which reference pixels are
compared with the classified pixels and as a result an accuracy report is generated

Figure 3. Comparison of the standard classification results for the selected classes: (1) built-up area;
(2) ger area; (3) central squire; (4) roads; (5) open area; (6) snow-ice.
Note: Classified images (a) using QuickBird bands, (b) using QuickBird and TerraSAR bands,
(c) using multiple bands and (d) using the PCs.
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indicating the percentages of the overall accuracy (ERDAS 1999). As ground truth
information, different AOIs containing 56,864 purest pixels have been selected. AOIs were
selected on a principle that more pixels to be selected for the evaluation of the larger
classes, such as built-up area and open area, than the smaller classes, such as central squire
and snow-ice. The overall classification accuracies for the selected classes are shown
in Table 4.

7.2 The refined Bayesian classification

For several decades, single-source multispectral data sets have been effectively used for
a land cover mapping. Unlike single-source data, multi-source data sets have proved

Table 4. The overall classification accuracy of the classified images.

Classified data

Reference data

Built-up area Ger area Open area Road Central squire Ice

Panel A: The original spectral bands
Built-up area 9183 1967 1492 409 295 497
Ger area 2498 9125 558 381 243 186
Open area 1956 1433 9126 1247 228 565
Road 956 59 398 7126 387 162
Central squire 223 36 302 107 2578 0
Ice 127 48 561 84 86 2235
Total 14943 12,668 12,437 9354 3817 3645

Panel B: TerreaSAR and QuickBird data
Built-up area 10,421 1828 1109 211 203 498
Ger area 2241 9738 412 192 191 270
Open area 1039 898 9859 621 278 567
Road 793 86 276 8031 436 151
Central squire 259 67 298 198 2651 0
Ice 190 51 483 101 58 2159
Total 14,943 12,668 12,437 9354 3817 3645

Panel C: Multiple bands
Built-up area 12,192 798 774 248 568 982
Ger area 1985 11026 399 183 56 561
Open area 211 693 10,740 509 129 474
Road 329 79 297 8227 272 0
Central squire 226 72 130 187 2792 0
Ice 0 0 97 0 0 1628
Total 14,943 12,668 12,437 9354 3817 3645

Panel D: PC1, PC2, PC3 and PC4
Built-up area 10,533 1811 1123 219 221 423
Ger area 2293 9891 454 201 187 234
Open area 1021 789 9882 478 179 554
Road 787 57 301 8311 386 124
Central squire 203 62 312 85 2812 0
Ice 106 58 365 60 32 2310
Total 14,943 12,668 12,437 9354 3817 3645

Note: Overall accuracy for Panel A: 69.24% (39,373/56,864); Panel B: 75.37% (42,859/56,864);
Panel C: 81.96% (46,605/56,864); Panel D: 76.92% (43,739/56,864).
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to offer better potential for discriminating between different land cover types. Generally,
it is very important to design a suitable image processing procedure in order to classify any
RS data successfully into a number of class labels. The effective use of different features
derived from different sources and the selection of a reliable classification technique can be
a key significance for the improvement of classification accuracy (Lu and Weng 2007).
In this study, for the classification of urban land cover types, a refined Bayesian statistical

Figure 4. Classification result obtained by the refined method.

Table 5. The overall classification accuracy of the classified image using the refined method.

Classified data

Reference data

Built-up area Ger area Open area Road Central squire Ice

Built-up area 14,563 76 298 284 671 1291
Ger area 0 12,318 0 0 0 0
Open area 234 274 11,954 754 0 106
Road 146 0 152 8316 430 391
Central squire 0 0 33 0 2716 0
Ice 0 0 0 0 0 1857
Total 14,943 12,668 12,437 9354 3817 3645

Note: Overall accuracy¼ 90.96% (51,724/56,864).
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Figure 5. A general diagram for the refined Bayesian classification.
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MLC algorithm has been constructed. As features, multiple bands that include the original
TerraSAR and QuickBird images, as well as four other derivative bands obtained from
texture measures have been used.

Unlike the traditional Bayesian classification, the constructed classification algorithm
uses spatial thresholds defined from the local knowledge. The local knowledge was defined
on the basis of the spectral variations of the land surface features on the fused images
as well as the texture information delineated on the dissimilarity images. It is clear that
a spectral classifier will be ineffective if applied to the statistically overlapping classes such
as built-up area and ger area because they have very similar spectral characteristics.
For such spectrally mixed classes, classification accuracies should be improved if the
spatial properties of the classes of objects could be incorporated into the classification
criteria. The idea of the spatial threshold is that it uses a polygon boundary to separate
the overlapping classes and only the pixels falling within the threshold boundary are used
for the classification. In that case, the likelihood of the pixels to be correctly classified will
significantly increase, because the pixels belonging to the class that overlaps with the
class to be classified using the threshold boundary are temporarily excluded from the
decision-making process. In such a way, the image can be classified several times using
different threshold boundaries and the results can be merged (Amarsaikhan and
Sato 2004). As prior probabilities, the probabilities used in the standard method
(i.e., built-up area¼ 0.25, ger area¼ 0.2 open area¼ 0.2, road¼ 0.15, central squire¼ 0.1
and ice¼ 0.1) have been used.

The result of the classification using the refined method is shown in Figure 4. For the
accuracy assessment of the classification result, the overall performance has been used,
taking the same number of sample points as in the previous classifications. The confusion
matrix produced for the refined classification method showed overall accuracy of 90.96%
(Table 5). As could be seen from Figure 4, the result of the classification using the
refined Bayesian classification is much better than result of the standard method. The
classification accuracy would have been still higher if images of the same year had been
used. As it was, there was a time difference of two years between the optical and SAR
scene. Hence, some misclassifications may have been due to changes in the urban area
because of infrastructure developments. A general diagram of the refined Bayesian
classification is shown in Figure 5.

8. Conclusions

The overall idea of the research was to compare the performances of different data fusion
techniques for the enhancement of different urban features to be used for the training
site selection and subsequent enhanced classification of urban land cover classes of
Ulaanbaatar city, Mongolia using a refined classification methodology. For the data
fusion, wavelet-based fusion, Brovey transform, Elhers fusion and PCA were used.
Although, the fused images looked very similar, detailed analysis of each image revealed
that the Brovey transformed image gave a superior image in terms of the spatial separation
among different urban features. To extract the reliable urban land cover information from
the selected RS data sets, a refined Bayesian classification algorithm that uses spatial
thresholds defined from the local knowledge was constructed. Overall, the study
demonstrated that multi-source information can significantly improve the interpretation
and classification of land cover types and the refined Bayesian classification is a powerful
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tool to produce a reliable land cover map. In addition, it could be seen that the method can
produce a map that is ready-to-use for decision-making, when there is a set of proper
spatial thresholds applied to multi-source data sets in which optical and SAR images as
well as historical thematic information are integrated.
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