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ABSTRACT 

The aim of this study is to conduct urban land cover mapping in Mongolia using optical and synthetic 

aperture radar (SAR) images. To extract the reliable urban land cover information from the available 

remote sensing (RS) data sets, a refined maximum likelihood classification algorithm that uses spectral 

and spatial thresholds defined from the local knowledge is constructed. Overall the research indicates 

that the spectral and spatial thresholds defined from the local knowledge could considerably improve 

the performance of the classification. 
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INTRODUCTION 

Generally, high resolution optical RS data sets taken from different Earth observation satellites 

such as Landsat and SPOT have been successfully used for a land-cover mapping since the operation 

of the first Landsat launched in 1972, whereas high resolution SAR images taken from space platforms 

have been widely used for different thematic applications since the launch of the ERS-1/2, JERS-1 and 

RADARSAT satellites (Amarsaikhan et al. 2004). It is clear that the combined application of optical 

and SAR data sets can provide unique information for different thematic studies, because passive 

sensor images will represent spectral variations of various surface features, whereas microwave data 

with their penetrating capabilities can provide some additional information (Amarsaikhan et al. 2007). 

Traditionally, multispectral RS data sets have been widely used for a land cover mapping and 

for the generation of land cover information, different supervised and unsupervised classification 

methods have been applied. However, the emergence of microwave images has given new 

opportunities for the users and researchers dealing with processing and analysis of remotely sensed 

data sets. Unlike single-source data, data sets from multiple sources have proved to offer better 

potential for discriminating between different land cover types. Many authors have assessed the 

potential of multisource images for the classification of different land cover classes (Serpico et al. 

1995, Benediktsson et al. 1997, Amarsaikhan and Douglas 2004, Wu et al. 2009). 

Recently, mapping of urban areas, specifically at regional and global scales has become an 

important task due to the increasing pressures from rapid urbanization processes (Cao et al. 2009). 

However, in most cases urban areas are complex and diverse in nature and many features have similar 

spectral characteristics and it is not easy to separate them by the use of common feature combinations 

or by applying ordinary techniques. In order to successfully extract urban land cover classes, reliable 

features derived from multiple sources and an efficient classification technique should be used 

(Amarsaikhan et al. 2012). 

The aim of this study is to classify the multisource features using a refined maximum 

likelihood classifier. For the final analysis, optical and microwave data sets of Ulaanbaatar, the capital 

city of Mongolia have been used. The analysis was carried out using PC-based ERDAS Imagine 10.1 

and ENVI 4.8. 

 

TEST SITE AND DATA SOURCES 
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As a test site, Ulaanbaatar, the capital city of Mongolia has been selected. Ulaanbaatar is 

situated in the central part of Mongolia, on the Tuul River, at an average height of 1350m above sea 

level and currently has about 1.28 million inhabitants. Although, the city is extended from the west to 

the east about 30km, and from the north to the south about 20km, the study area chosen for the present 

study covers an area of 11.3km long and 8.7km wide. In the selected image frame, it is possible to 

define such classes as built-up area, ger area, forest, grass, soil and water. The built-up area includes 

buildings of different sizes, while ger area includes mainly gers surrounded by fences. Figure 1 shows 

a Landsat image of the test site, and some examples of its land cover. 

In the present study, for the urban land cover studies, a Landsat TM image of 31 July 2010 

and an Envisat C-band image of 25 May 2010 have been used. The Landsat ETM+ data has seven 

multispectral bands (B1: 0.45–0.52μm, B2: 0.52–0.60μm, B3: 0.63–0.69μm, B4: 0.76–0.90μm, B5: 

1.55–1.75μm, B6: 10.40–12.50μm and B7: 2.08–2.35μm). The spatial resolution is 30 m for the 

reflective bands, while it is 120 m for the thermal band. In the current study, channels 2,3,4,5,7 have 

been used. The Envisat is a European satellite carrying a cloud-piercing, all weather free polarimetric 

radar which is designed to monitor the Earth from a distance of about 790km. The characteristics of 

the Envisat data used in the current study are shown in Table 1. 

 

 
 

Figure 1. 2010 Landsat image of the selected part of Ulaanbaatar. 

1-built-up area; 2-ger area; 3-forest; 4-grass; 5-soil; 6- water 

 

Table 1.The characteristics of the Envisat data 

 

Parameter 

 

C-band 

 

Polarization HH 

Frequency 5.36GHz 

Wavelength 5.6cm 

Spatial resolution 30m 

 

COREGISTRATION OF THE IMAGES & SPECKLE SUPPRESSION OF THE SAR DATA 

In order to perform accurate data fusion, good geometric correlation between the images are 

needed. As a first step, the Landsat image was georeferenced to a Gauss-Kruger map projection using 

12 ground control points (GCPs) defined from a topographic map of the study area. The GCPs have 

beenselected on clearly delineated crossings of roads, streets and city building corners. For the 

transformation, a second-order transformation and nearest-neighbour resampling approach were 

applied and the related rootmean square (RMS) error was 0.83 pixel. Then, the Envisat image was 

geometrically corrected and its coordinates were transformed to the coordinates of the georeferenced 



 

Landsat image. In order to correct the SAR image, 18more regularly distributed GCPs were selected 

from different parts of the image. For the actual transformation, a second-order transformation was 

used. As a resampling technique, the nearest-neighbour resampling approach was applied and the 

related RMS error was 1.16 pixel. 

As microwave images have a granular appearance due to the speckle formed as a result of the 

coherent radiation used for radar systems; the reduction of the speckle is a very important step in 

further analysis. The analysis of the radar images must be based on the techniques that remove the 

speckle effects while considering the intrinsic texture of the image frame (ENVI 1999). In this study, 

four different speckle suppression techniques such as local region, lee-sigma, frost and gammamap 

filters of 3x3 and 5x5 sizes were compared in terms of delineation of urban features and texture 

information. After visual inspection of each image, it was found that the 3x3 gammamap filter 

(ERDAS 1999) created the best image in terms of delineation of different features as well as 

preserving content of texture information. In the output image, speckle noise was reduced with very 

low degradation of the textural information. 

 

STANDARD MAXIMUM LIKELIHOOD CLASSIFICATION 

Initially, to define the sites for the training signature selection from the combined optical and 

microwave images, several areas of interest (AOI) representing the available six classes (built-up area, 

ger area, forest, grass, soil and water) have been selected through accurate analysis. The separability of 

the training signatures was firstly checked in feature space and then evaluated using Jeffries–Matusita 

distance. The values of Jeffries–Matusita distance range from 0 to 2.0 and indicate how well the 

selected pairs are statistically separate. The values greater than 1.9 indicate that the pairs have good 

separability. After the investigation, the samples that demonstrated the greatest separability were 

chosen to form the final signatures.  

The final signatures included about 80–827 pixels. For the classification, the following feature 

combinations were used: 

 

1. All original spectral bands of the Landsat TM image. 

2. Red, near infrared and first middle infrared (i.e., 3,4 and 5) bands of the Landsat TM image. 

3. The Envisat and original spectral bands of the Landsat TM data. 

 

 
 

Figure 2. Comparison of the standard classification results for the selected classes (1-built-up 

area; 2-ger area; 3-forest; 4-grass; 5-soil; 6-water). Classified images (a) using Landsat TM 

bands, (b) using bands 3, 4 and 5 of the Landsat TM image, (c) using multisource bands. 



 

 

For the actual classification, a maximum likelihood classifier (Richards and Xia 1999) has 

been used. The final classified images are shown in figure 2(a–c). As seen from figure 2(a–c), the 

classification result of all bands of Landsat TM gives the worst result, because there are high overlaps 

among two urban classes: built-up area and ger area. However, these overlaps decrease on the 

classified image of red and infrared bands. It can be explained by a fact that a fewer bands with 

statistically separable features can produce a better result than many bands with high overlaps. As 

could be seen, although multisource images give some improvement, it is still very difficult to obtain a 

reliable land cover map by the use of the standard technique, specifically on decision boundaries of the 

statistically overlapping classes. 

For the accuracy assessment of the classification results, the overall performance has been 

used. This approach creates a confusion matrix in which reference pixels are compared with the 

classified pixels and as a result an accuracy report is generated indicating the percentages of the 

overall accuracy (Mather and Koh 2011). As ground truth information, different AOIs containing 1239 

purest pixels have been selected. AOIs were selected on a principle that more pixels to be selected for 

the evaluation of the larger classes such as ger area and soil than the smaller classes such as water. The 

overall classification accuracies for the selected classes are shown in table 2. 

 

Table 2. The overall classification accuracy of the classified images 

No The used band combinations Overall accuracy 

(%) 

1 All Landsat TM bands 84.12 

2 Bands 3, 4 and 5 of the Landsat TM 86.29 

4 Optical and SAR bands 89.37 

 

THE REFINED MAXIMUM LIKELIHOOD CLASSIFICATION 

For many years, single-source multispectral data sets have been efficiently used for a land 

cover mapping. Since the appearance of the first single polarization microwave data sets, multisource 

images have proved to offer better potential for discriminating between different land cover types. In 

general, it is very important to design an appropriate image processing procedure in order to 

successfully classify any digital data into a number of class labels. The effective use of different 

features derived from different sources and the selection of a reliable classification technique can be a 

key significance for the improvement of classification accuracy (Solberg et al. 1996, Amarsaikhan and 

Douglas 2004, Amarsaikhan et al. 2012, Laurin et al. 2013). In the present study, for the classification 

of urban land cover types, a refined algorithm has been constructed. As the features, bands 3,4,5 and 7 

of Landsat TM and Envisat HH polarization images have been used. The green band (i.e., band 2) of 

Landsat was excluded, because it had a high correlation with the red band (i.e., band 3). 

Unlike the traditional classification, the constructed classification algorithm uses spectral and 

spatial thresholds defined from the local knowledge. The local knowledge was defined on the basis of 

the spectral variations of the land surface features on the fused images. It is clear that a spectral 

classifier will be ineffective if applied to the statistically overlapping classes such as built-up area and 

ger area because they have very similar spectral characteristics. For such spectrally mixed classes, 

classification accuracies should be improved if the spectral and spatial thresholds could be 

incorporated into the classification decision-making. The idea of the spatial threshold is that it uses a 

polygon boundary to separate the overlapping classes and only the pixels falling within the threshold 

boundary are used for the classification. In that case, the likelihood of the pixels to be correctly 

classified will significantly increase, because the pixels belonging to the class that overlaps with the 

class to be classified using the threshold boundary are temporarily excluded from the decision making 

process. In such a way, the image can be classified several times using different threshold boundaries 

and the results can be merged (Amarsaikhan et al. 2012). 

In the present study, the spatial thresholds have been applied for differentiation of the 

spectrally similar classes such as built-up area and ger area as well as forest and grass. The result of 

the classification using the refined method is shown in figure 3. For the accuracy assessment of the 

classification result, the overall performance has been used, taking the same number of sample points 

(i.e., 1239 purest pixels) as in the previous standard classifications. The confusion matrix produced for 



 

the refined classification method showed overall accuracy of 91.83%. As could be seen from figure 3, 

the result of the classification using the refined classifier is much better than results of the standard 

method. As the overall accuracy exceeds 90%, this kind of result can be directly used for a spatial 

decision-making or update a thematic layer within a spatial information system. 

 

 
 

Figure 3. Classification result obtained by the refined method (1-built-up area;  

2-ger area; 3-forest; 4-grass; 5-soil; 6-water). 

 

CONCLUSIONS 

The aim of the research was to classify urban land cover types and construct a refined 

maximum likelihood classification algorithm that uses spectral and spatial thresholds defined from the 

local knowledge. For this purpose, as a test area Ulaanbaatar city was selected and as data sources 

multispectral Landsat and Envisat SAR images were used. Overall, the study demonstrated that 

multisource information can considerably improve the classification of land cover types and the 

refined maximum likelihood classifier is a powerful tool to produce a reliable land cover map. 
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