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Abstract
River hydrogeomorphology is a major driver shaping biodiversity and community 
composition. Here, we examine how hydrogeomorphic heterogeneity expressed by 
Functional Process Zones (FPZs) in river networks is associated with fish assemblage 
variation. We examined this association in two distinct ecoregions in Mongolia ex-
pected to display different gradients of river network hydrogeomorphic heteroge-
neity. We delineated FPZs by extracting valley-scale hydrogeomorphic variables at 
10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We 
sampled fish assemblages and examined variation associated with changes in gradi-
ents of hydrogeomorphology as expressed by the FPZs. Thus, we examined assem-
blage variation as patterns of occurrence- and abundance-based beta diversities for 
the taxonomic composition of assemblages and as functional beta diversity. Overall, 
we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight 
fish species were found in the FS river network and seventeen in the G, four of them 
common to both ecoregions. Functional richness was correspondingly higher in the 
G river network. Variation in the taxonomic composition of assemblages was driven 
by species turnover and was only significant in the G river network. Abundance-
based taxonomic variation was significant in river networks of both ecoregions, while 
the functional beta diversity results were inconclusive. We show that valley-scale 
hydrogeomorphology is a significant driver of variation in fish assemblages at a mac-
rosystem scale. Both changes in the composition of fish assemblages and the carrying 
capacity of the river network were driven by valley-scale hydrogeomorphic variables. 
River network hydrogeomorphology as accounted for in the study has, therefore, the 
potential to inform macrosystem scale community ecology research and conserva-
tion efforts.
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1  | INTRODUC TION

Fish assemblages differ among ecoregions due to diverse evolution-
ary origins and historical dispersal routes (Wiley & Mayden, 1985). 
In addition, stream fish assemblages are the product of selection 
along environmental gradients driven by differences in biological, 
chemical, topographic, and in-stream physical variables that occur 
at multiple scales associated with landscape, valley, and local stream 
conditions (Fausch et al., 2002; Frissell et al., 1986; Gido et al., 2006; 
Gorman & Karr, 1978; Sullivan et al., 2006). Most of these in-stream 
physical variables reflect the attributes of fluvial hydrogeomorphol-
ogy resulting from valley-scale variables that include floodplain 
structure and valley slope and shape (Baxter & Hauer, 2000; Boys & 
Thoms, 2006). The effects of environmental gradients on fish assem-
blages are well-studied along longitudinal river gradients (Jackson 
et al., 2001). At intermediate and small spatial scales, local environ-
mental gradients (e.g., habitat and microhabitat use) filter species 
from a regional pool leading to a realized assemblage at a local scale 
(Poff, 1997). Such gradients, while being more temporally variable, 
are often easier to measure and to correlate with fish assemblage 
than large-scale processes (Lamouroux et al., 1999). Among large-
scale processes, the longitudinal succession of fish species (i.e., spe-
cies turnover) has been widely examined and validated. In general, 
longitudinal changes (or zonation) in fish assemblages are thought 
to be predictable as responses to longitudinal continuous gradients 
in water temperature, channel morphology, and water velocity. In 
contrast, distinct changes in fish assemblages at smaller spatial ex-
tents are considered to be responses to abrupt discontinuities in 
stream hydrogeomorphology (e.g., Belliard et  al.,  1997; Torgersen 
et al., 2006; Zbinden & Matthews, 2017). Such discontinuities, pri-
marily driven by valley-scale hydrogeomorphic features, often bet-
ter describe stream biocomplexity of dynamic interactions between 
communities and environmental physical parameters.

The Riverine Ecosystem Synthesis (RES, Thorp et al., 2008) por-
trays streams as a repeatable, and only partially predictable, succes-
sion of large hydrogeomorphic patches formed by drivers including 
regional geology, valley conditions, channel and valley geomorphic 
structures, and climatic and hydrologic patterns (Thoms et al., 2018; 
Thorp et al., 2006, 2008). The first tenet of the RES predicts that 
species distribution in a river network is associated primarily with 
the distribution of large spatial patches formed principally by hydro-
geomorphic forces and modified by climate and vegetation. These 
hydrogeomorphic patches, often called Functional Process Zones 
(FPZs), revealed significant associations with discrete stream assem-
blages of fishes (Elgueta et al., 2019) and macroinvertebrates (Maasri 
et al., 2019, 2021). However, how the heterogeneity of FPZs affects 
the organization of fish assemblages at the scale of a river macrosys-
tem has not been adequately explored yet.

Here, we examine how hydrogeomorphic heterogeneity, ex-
pressed by FPZs in river networks, is associated with fish assemblage 
variation. We examined this relationship in two distinct ecoregions 
in Mongolia: forest steppe (FS) and grassland (G). Mongolian riv-
ers represent ideal study sites to investigate how river network 

hydrogeomorphology drives changes in fish assemblages since most 
Mongolian rivers are relatively unimpacted by human activities. 
Mongolian rivers constitute an opportunity to study river systems 
prior to any development largely because of sparse human popula-
tion density and extreme remoteness (Mercado-Silva et al., 2008). 
Moreover, these rivers generally lack impoundments and introduced 
species. The available literature on fish assemblages in Mongolian riv-
ers is scarce, with fish assemblages only being explored in a few pub-
lications, including identification and occurrences (Kottelat,  2006; 
Mendsaikhan et al., 2017), ecology (Kaus et al., 2018; Mendsaikhan 
et al., 2016; Mercado-Silva et al., 2008; Olson et al., 2016), conser-
vation (Jensen et al., 2009), and genetics (Dulmaa et al., 2016; Kaus 
et al., 2019; Roman et al., 2018). However, variation of fish assem-
blages at the scale of entire river networks is largely unknown for 
most Mongolian drainages. Moreover, the variation of fish assem-
blages with hydrogeomorphology is still vastly unexplored.

We predict that variation in hydrogeomorphology among river 
networks located in two different ecoregions of Mongolia will have 
resulted in unique associations between fish habitats and fish as-
semblages. For example, the river network of the FS ecoregion tends 
to be high gradient, with narrow valleys that result in constrained 
banks, and displays higher seasonal hydrological variation (Figure 1). 
Fish habitats in this river network should consist of large substrata, 
high current velocity, and distinct riffle-run units. In contrast, the 
river network of the G ecoregion should be low gradient and char-
acterized by wide valleys with unconstrained banks, and more pre-
dictable hydrological variation. Fish habitats in the G river network 
should consist of small substrata, low current velocity, side chan-
nels, and less distinct riffle-run units. Thus, we hypothesized that: 
(a) Fish assemblages of both ecoregions vary with river hydrogeo-
morphology at the valley scale when the variation of assemblages is 
evaluated as patterns of beta diversity, and (b) such variation should 
result from discrete changes in both taxonomic and functional com-
positions of fish assemblages. Given that the range of valley-scale 
hydrogeomorphic variables is expected to be different among ecore-
gions, we hypothesized that (c) the variation of fish assemblages in 
association with the hydrogeomorphic gradients displayed by river 
networks would be different in the two ecoregions. Thus, greater 
range of valley-scale hydrogeomorphic heterogeneity should result 
in a greater variation of fish assemblages in the river network .

2  | METHODS

2.1 | River and site selection

We examined fish assemblages in river networks of two ecore-
gions of the temperate steppe biome in Mongolia. We sampled the 
Kherlen River network flowing across the grassland ecoregion (G) of 
eastern Mongolia and the Delgermörön and Eg Rivers, major tribu-
taries of the Selenge River network, flowing across the forest steppe 
ecoregion (FS) of northern Mongolia (Figure 2). The Kherlen River 
network flows east into China and empties into Lake Hulum (called 
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F I G U R E  1   Picture of two distinct Functional Process Zones of the hydrogeomorphic gradient established in the Delgermörön river, a 
major tributary of the Selenge river network. Picture credit: Emily Arsenault, Mongolia, 2017

F I G U R E  2   Map showing the FPZ delineation, from left to right, in the forest steppe river network (FS; portion of the Selenge river 
network) and the grassland river network (G; the Kherlen river network) in Mongolia. Sampled FPZs for fish assemblages are marked with an 
asterisk (*), and the color code used in the figure for the different FPZs is the same used in Appendix S2. Elevation (a.s.l. in m) is represented 
as a grayscale shade
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also Dalai Nuur), while the Selenge River network flows north into 
Russia and empties into Lake Baikal. These two major river networks 
are considered representative of rivers of the two ecoregions and 
are expected to display different fish assemblages.

We delineated Functional Process Zones (FPZs, also called hydro-
geomorphic patches; Thorp et al., 2006; Thorp et al., 2008) using the 
GIS-based program RESonate (Williams et al., 2013) to extract valley-
scale hydrogeomorphic and environmental variables from existing 
geospatial datasets. Primary geospatial data inputs to the RESonate 
included the following: mean annual precipitation extracted from 
WorldClim (30 arc-second), digital elevation model (DEM, Shuttle 
Radar Topography Mission (SRTM, 30-m resolution)), geological 
maps (The National Snow and Ice Data Center's Northern circumpo-
lar soils map), and streamline data (modeled from SRTM DEMs). For 
the delineation of FPZs, we used the ten most influential variables 
for valley-scale hydrogeomorphology. We extracted these variables 
at 10-km sample intervals: elevation, mean annual precipitation, ge-
ology (i.e., soil orders and geological characteristics), valley width, 
valley floor width (i.e., floodplain), valley width-to-valley floor width 
ratio, river channel sinuosity, right valley slope, left valley slope, and 
down valley slope. For each river network, data were normalized to a 
0–1 scale and a dissimilarity matrix was generated using a Gower dis-
similarity transformation (Gower, 1971). The Gower transformation is 
recommended for nonbiological data when the measures are range-
standardized (Thoms & Parsons, 2003). The dissimilarity matrix was 
used in a hierarchical clustering following the Ward linkage method, 
as it provided the best partitioning of cluster groups (Murtagh & 
Legendre, 2014). Additionally, we used a principal component anal-
ysis (PCA) to identify the contributive variables most important for 
group partitioning and to describe the cluster groups based on the 
ten variables identified above. Groups were later mapped to allow 
for identification of sampling sites (see below). We performed the 
clustering of FPZ groups using the cluster package (version 2.1.0) 
(Maechler et al., 2021) and the PCA using the FactoMineR package 
(version 1.42) (Lê et al., 2008) in R version 3.6.3 (R Core Team, 2020). 
We mapped the resulting groups using ArcGIS (version 10.5).

To test our hypotheses, we established hydrogeomorphic dis-
tances among the different FPZs occurring in the FS and G river 
networks. We used PCAs computed on the valley-scale hydrogeo-
morphic variables to establish hydrogeomorphic distances as pair-
wise Euclidean distances between FPZs in the PCA bi-dimensional 
plot. Pairwise Euclidean distances were established separately 
among FPZs in each ecoregion and were measured as distances be-
tween centroids summarizing the distribution of river sections in the 
bi-dimensional plot. Euclidean distances were later used to examine 
the linear regression models between hydrogeomorphic distances 
and beta diversity (β-diversity) metrics.

2.2 | Fish collections and traits

We collected fishes from reaches representing three FPZs in the 
FS river network and five FPZs in the G river network (see below). 

Sampling FPZs was constrained by accessibility to stream sites in a 
remote region and by time limitation during a one-month field ex-
pedition to sample each ecoregion. We established reaches for fish 
collections measuring at least 20 times the mean wetted width of 
the river at the sampling area. Selected reaches were representa-
tive of FPZs based on a visual inspection. We collected fishes by 
single-pass backpack electrofishing supplemented with angling 
(Ball State University IACUC #126193) following the American 
Fisheries Society standard collection protocols (Bonar et al., 2009) 
and reported fish abundance as fish-per-meter sampled. We sam-
pled fishes during one-month expeditions in each of the river net-
works, during the month of August in 2017 for the FS and 2019 for 
the G.

Fish species identifications and ecological and biological traits 
were determined according to Mendsaikhan et al., (2017), and repro-
ductive traits were referenced from Balon (1975). Continuous fish 
traits of longevity, fecundity, and maximal length were transformed 
to categorical traits as described in Appendix S1. In total, we used 
10 traits described with 41 modalities for subsequent trait analyses.

2.3 | Community data analyses

We calculated the taxonomic and functional alpha diversities for the 
sampled FPZs in each ecoregion. Taxonomic alpha diversity (taxo-
nomic richness, TRic) is expressed as the total number of fish species 
occurring in an FPZ, while functional alpha diversity was examined 
using the computed component of functional richness (FRic). FRic 
is a multidimensional measure that represents the amount of func-
tional trait space filled by a community. The functional trait space 
is therefore computed based on a convex hull volume algorithm as 
described by Villéger et al. (2008).

We examined variation in fish assemblages, as patterns of β-
diversity, along the hydrogeomorphic gradients displayed by the river 
networks in each ecoregion. We computed (a) taxonomic β-diversity 
metrics based on species occurrence, (b) taxonomic quantitative 
β-diversity metrics based on species abundance, and (c) functional 
β-diversity metrics accounting for the different ecological and bio-
logical traits expressed by the fish assemblages. We expected that 
taxonomic β-diversity indices for occurrence data and on abundance 
data would provide complementary information reflecting not only 
how replacement and richness difference occur among assemblages 
but also how the carrying capacities of FPZs change. Quantitative 
and qualitative pairwise taxonomic β-diversity metrics (for both oc-
currence data and abundance data) were computed as proposed by 
Baselga (2010) and Baselga (2013) in order to examine assemblage 
compositional differences between FPZs. Thus, on occurrence data 
we computed (a) the Sørensen dissimilarity index (βsor) to account for 
total compositional variation between assemblages of two FPZs, (b) 
the Simpson dissimilarity index (βsim) to capture only compositional 
changes due to taxa turnover, and (c) the nested-resultant dissim-
ilarity (βsne) calculated as the difference between βsor and βsim. On 
abundance data, we computed (d) the Ružička dissimilarity index 
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(βruz) to capture total abundance variation between FPZs in terms 
of their composition, (e) the balanced change in species abundance 
(βruz-bal), and (f) the unidirectional abundance gradient (βruz-gra). βruz re-
sults from the summation of βruz-bal and βruz-gra, two antithetic sources 
of dissimilarity. We applied Hellinger transformation on abundance 
data before computing β-diversity indices. Hellinger transformation 
offers a better compromise between linearity and resolution and 
has been recommended when simulated across ecological and geo-
graphic gradients (Legendre & Gallagher, 2001).

Pairwise functional β-diversity consisted of examining dissimi-
larities between assemblages of FPZs based on variation in volumes 
of the intersections of convex hulls in a multidimensional functional 
trait space as described by Villéger et al. (2013). For each ecoregion, 
we calculated a species-by-species Euclidean distance matrix on the 
trait data. Then, we used a metric multidimensional scaling analy-
sis (MDS, which is equivalent to a principal coordinates analysis), to 
break correlations between traits creating, therefore, orthogonal 
synthetic traits (MDS axes) that represented spectra of fish ecolog-
ical and biological niches. Coordinates of species along the first two 
MDS axes were used later on as inputs in the functional dissimilarity 
equations (Villéger et al., 2013).

We performed all computations in R version 3.6.3 (R Core Team, 
2020) and calculated the FRic using the FD package (version 1.0.12) 
(Laliberté et  al.,  2014), the β-diversity metrics using the betapart 
package (version 1.5.1) (Baselga & Orme, 2012), and the MDS using 
the vegan package (version 2.5-6) (Oksanen et al., 2019).

3  | RESULTS

The FPZ delineation of the forest steppe (FS) and grassland (G) river 
networks spanned 3,380 and 2,390 km of linear river network dis-
tances, respectively. FS river sections were mainly characterized 
by higher elevation and valley slopes, while G river sections were 
characterized by wide valleys and floodplains (i.e., valley floor, see 
Appendix S2-1). Using the hierarchical method, we established five 
and six FPZs for the FS and G river networks, respectively. The most 
contributing variable for FPZ delineation in FS was valley width, fol-
lowed by elevation and valley floor width (Appendix S2-2). For FPZ 

delineation in G, valley floor width was the most contributing vari-
able, followed by valley width and elevation.

Euclidean distances, representing hydrogeomorphic distances, 
among FPZ were established in a PCA bi-plots summarizing 49.8%, 
and 57.9% of the total variance for FS and G, respectively (Figure 3). 
The convex hulls delimiting the sampled FPZs, a representation of 
the portion of hydrogeomorphic gradients accounted for in our anal-
ysis, show that the entire hydrogeomorphic gradient expressed by 
FPZs in the G river network was accounted for because all FPZs fall 
within the total convex hull area. In contrast, we were able to ac-
count for only a portion of the hydrogeomorphic gradient expressed 
by FPZs in the FS river network.

We sampled fish assemblages from three and five FPZs from 
the G and FS river networks, respectively (Appendix S2-3). We col-
lected a total of 21 fish species in the two sampled river networks 
(Appendix  S1), of which only four species were shared by both 
ecoregions. Eight species were found in the FS and seventeen spe-
cies in G. Overall, higher TRic values were found in FPZs of G com-
pared to FS. On average, 3.9 (±0.5) species were found per FPZ in 
the FS river network and 6.1 (±1.6) species per FPZ in the G river 
network. Taxonomic variation as expressed by the occurrence-
based β-diversity metrics shows increasing dissimilarity in species 
composition across the hydrogeomorphic gradient displayed by 
FPZs in the G river network (Figure 4d). This increase in dissimilar-
ity (βsor: R2  =  0.27, p  =  0.02) was driven only by species turnover 
(βsim: R2 = 0.20, p = 0.05). No dissimilarity was observed across the 
hydrogeomorphic gradient displayed by FPZs in the FS river network 
(Figure  4a). Abundance-based β-diversity metrics show increasing 
dissimilarity in total abundance variation for both G (βruz: R

2 = 0.30, 
p = 0.02) and FS (βruz: R

2 = 0.32, p = 0.08) river networks. This change 
is attributed to increasing dissimilarity in the balanced change in spe-
cies abundance (βruz-bal: R

2 = 0.34, p = 0.07, and R2 = 0.31, p = 0.01 
for FS and G river networks, respectively).

Overall, higher FRic values were found in FPZs of G compared 
to FS, with FRic values of 15.3 (±11.3) and 9.5 (±5.7), respectively. 
The results of functional β-diversity were, however, inconclusive 
(Figure 4c and f). No significant linear regressions were established 
between any of the β-diversity metrics and the hydrogeomorphic 
gradients displayed by FPZs in FS and G river networks.

F I G U R E  3   Scatter plots showing the 
distribution of Functional Process Zones 
(FPZs) in forest steppe (plot A, FPZs: 
FS1–5) and grassland (plot B, FPZs: G 1–6) 
rivers. Black dots indicate FPZs sampled 
for fish communities and included in the 
analysis. Polygons are representations 
of the hydrogeomorphic gradients (see 
Methods section) covered in the analysis

0 2-2

0

1

2 G4

G1
G3

G6

G5G2

FS5

FS4

FS2

0 0.5 1-0.5-1

2

0

1

-1 FS1

FS3

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

(a) (b)

28.9% 44.6%

20
.9

%

13
.3

%

FS3



6  |     MAASRI et al.

4  | DISCUSSION

Our study demonstrated that hydrogeomorphic gradients, expressed 
by the range of hydrogeomorphic characteristics of Functional 
Process Zones (FPZs) in river networks, are drivers of variation in fish 
assemblages. These gradients of discrete hydrogeomorphic patches 
established at the valley scale should not be confused with the longi-
tudinal river zonation as expressed by the River Continuum Concept 
(RCC, Vannote et  al.,  1980), where longitudinal changes in fish as-
semblages along the river continuum have already been validated 
(Goldstein & Meador,  2004; Oberdorff et  al.,  1993). The RCC has 
predicted changes in communities driven by longitudinal changes in 
carbon and food sources, and parameters associated with changes 
in elevation (e.g., dissolved oxygen, temperature, and flow velocity). 
However, it failed to underline the role of hydrogeomorphology in 
driving changes in communities. Here, we demonstrate how valley-
scale hydrogeomorphology, not necessarily associated with longitu-
dinal changes reflected by a river continuum, drives change in fish 
communities. Thus, the observed changes in β-diversity patterns as-
sociated with hydrogeomorphic gradients in river networks of forest 
steppe (FS) and grassland (G) ecoregions support our first hypothesis.

Mongolian fish assemblages of FS and G river networks are 
expected to have low species richness compared to watersheds 
at lower latitudes (Willig et  al.,  2003). We collected 21 out of 33 
fish species known to occur in these two ecoregions (Mendsaikhan 
et al., 2017). The twelve species we did not collect are large-bodied 
or rare fishes and not likely to be collected easily with our fishing 
methods (Appendix S1).

We found discrete fish assemblages associated with FPZs as 
previously reported by Elgueta et  al.  (2019). However, variation in 

the occurrence of fish species across the hydrogeomorphic gradi-
ent was only visible in the G river network and was mainly driven by 
species turnover (i.e., species replacement). Such contribution of spe-
cies turnover to assemblage variation has been previously observed 
across different ecoregions and was associated mainly with elevation 
changes (Barboza & Villalobos, 2018; Herrera-Pérez et al., 2019). No 
occurrence-based taxonomic variation was associated with the hydro-
geomorphic gradient established for the FS river network. This dif-
ference can be partially explained by differences in the delineation of 
river networks between the two ecoregions. The entire river network 
(i.e., from headwaters to near mouth) was delineated in G. Comparably, 
only a portion of the river network in FS was delineated because of the 
very large size of this river network and for practical sampling con-
straints in the anticipated month-long expedition in Mongolia. Yet, the 
delineated portion of the FS river network is still larger than the entire 
river network in G (see results, 3,380 and 2,390 km for FS and G, re-
spectively). We can consider that this delineation characterized mainly 
the upper portion of the Selenge River network, a major river network 
in Mongolia that drains an estimate of 60% of the inflow to Lake Baikal 
in neighboring Russia. Accordingly, we believe that the hydrogeomor-
phic gradient established for FS displays only partially the gradient of 
available FPZs, and the fish species collected in FS similarly character-
ize only the upper part of this river network.

In contrast, variation in abundance-based β-diversity metrics 
was associated with the hydrogeomorphic gradients established in 
both ecoregions. The abundance-based variation shows changes 
in the balance of abundances among species where the individuals 
of some species in one FPZ are substituted by the same number of 
individuals of different species in another FPZ (see, Baselga, 2013). 
Such variation can be interpreted as changes in the carrying capacity 

F I G U R E  4   Plots showing 
linear regressions between the 
hydrogeomorphic distances established 
between FPZs in forest steppe (plots 
a, b, c) and grassland river networks 
(plots d, e, f) and β-diversity metrics. 
Pairwise Euclidean distances representing 
hydrogeomorphic distances are plotted on 
the x-axes and the β-diversity metrics on 
the y-axes. Plots are organized into three 
columns, showing regressions for the 
occurrence-based β-diversity (plot a and 
d), the abundance-based β-diversity (plot 
b and e), and the functional β-diversity 
(plot c and f). The β-diversity metrics 
are introduced in the Methods section 
and are shown here with different line 
patterns. Asterisks (*) next to the metrics 
signal statistical significance of the linear 
regression, with one and two asterisks 
indicating significance at 10% and 5%, 
respectively
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of FPZs, a direct feature of habitat characteristics and availability 
(Cramer & Ackerman,  2009). The availability and diversity of suit-
able habitats will typically determine the carrying capacity of FPZs 
for fishes, and we predicted that habitat characteristics would be 
directly linked to valley-scale hydrogeomorphology as accounted for 
in this study. Exceptions can certainly arise when river connectivity 
is an issue; however, this is unlikely among the Mongolian drainages 
we examined (Kaus et al., 2018; Maasri et al., 2018). We can con-
clude that variation in the taxonomic composition of assemblages 
(whether occurrence-based or abundance-based are examined) es-
tablished in this study echoes published literature highlighting the 
role of valley-scale hydrogeomorphology on the variation in fish as-
semblages in river macrosystems (Boys & Thoms, 2006). However, 
variation in functional β-diversity metrics was poorly associated with 
hydrogeomorphology in our study. Whether this is due to the set of 
traits used in this analysis or to the relatively low number of taxa in 
some FPZs is currently unknown. An additional examination of these 
river networks will be needed to confirm how valley-scale hydrogeo-
morphology affects changes in the functional composition of fish as-
semblages. Accordingly, we believe that our findings of associations 
between fish assemblage variation and hydrogeomorphic gradients 
in river networks only partially support our second hypothesis.

We expected to observe differences in the associations between 
assemblage variation and hydrogeomorphology among the two 
ecoregions. However, similar patterns (except for the occurrence-
based taxonomic variation as discussed above) were found across 
the two ecoregions. Certainly, our results account only for valley-
scale hydrogeomorphology and did not include other major drivers 
of change in fish assemblages like reach-scale habitat structure, 
differences in energy fluxes, or food webs. Nevertheless, we can 
presume that in both ecoregions valley-scale hydrogeomorphology 
plays an essential role in structuring fish assemblages at a macrosys-
tem scale. This challenges, therefore, our third hypothesis.

Additionally, we would like to underline that the findings of 
this study can have substantial implications in informing aquatic 
biodiversity management and conservation strategies. In the case 
of Mongolia, the vast majority of rivers are still considered rela-
tively pristine compared to global rivers. However, recent devel-
opments in livestock production (Jamsranjav et  al.,  2018; Maasri 
& Gelhaus, 2011), extensive recreational fishing (Kaus et al., 2019), 
increased mining activities (Batsaikhan et  al.,  2017; Stubblefield 
et al., 2005), and potential hydroelectric projects threaten the biodi-
versity and ecological integrity of these river networks. Our results 
showing variation in fish assemblages across FPZs provide, there-
fore, a baseline for conservation efforts in these understudied river 
networks. We confirm that biodiversity patterns are strongly asso-
ciated with valley-scale hydrogeomorphology, where the alteration 
of the latter can result in significant changes in fish assemblages and 
potentially lead to losses in biodiversity.
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