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Abstract: The aim of this study is to conduct a forest area classification using optical and
synthetic aperture radar (SAR) satellite data sets. For this purpose, a forested site around
the Lake Khuvsgul situated in northern Mongolia is selected. As remote sensing (RS) data
sources, multispectral Landsat 8 images and ALOS-2 PALSAR L-band HH polarization
data are used. To produce a reliable land cover map from the combined multichannel
and SAR images, a support vector machine (SVM) and maximum likelihood classification
(MLC) techniques are compared. For the accuracy assessment, an overall accuracy that
applies a confusion matrix is used. Overall, the research demonstrates that the integrated
optical and microwave RS can be efficiently used for the forest area discrimination.
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Introduction

Forest cover occupies a noticeable part of the
planet's land area and range from undisturbed
primary forests to forests managed and used
for a variety of different purposes. Utilization
of forest resources has an impact on the en-
vironment and on the economies of the world
nations (Kangas, 2018). Forests have a his-
tory of being exploited either adequately, but
more efforts are now being made towards their
sustainable use. The assessment of forests in
terms of their extent, condition, use and value is
periodically realized at both global and national
levels. Applications relating to the monitoring of
forest status and to forest management require
updated and accurate inventories, summariz-
ing information of the changes related to the
forests, rates and patterns of deforestation and
afforestation (Persson and Stahl, 2020).

Historically, forestry has been concerned main-
ly with the assessment of timber resources and
the management and utilization of closed for-
ests for the production of wood. The applica-
tions of satellite data for effective forest man-
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agement on a more scientific basis is consis-
tent with the priorities set at national, regional,
and local level studies. The shift in priority of
forest management towards ecologically sus-
tainable forest resources management call for
reliable thematic spatial information with a pro-
vision to update and retrieve for management
decisions at various levels (Barbara, 2016).
Sustainable forest management aims to man-
age forested areas in order to obtain products
and services while simultaneously minimizing
any undesirable effects on the social and sur-
rounding environments (Fernandez-Ordonez
et al. 2009). In other words, it is a balancing
act between the demands of an ever increas-
ing human population and maintenance of the
ecological functions of healthy forest ecosys-
tems (MacDicken et al. 2015).

Remote sensing is used in a wide array of for-
estry applications, including forest cover up-
dating, depletion monitoring and measuring,
forest type discrimination; determination of
biophysical properties of forest stands; collect-
ing harvest information; updating of inventory



information for timber supply, biomass
estimation, species inventory,
regeneration assessment; monitoring the
quantity, health and diversity of the
forests. In addition, RS techniques can
identify, distinguish, classify, assess and
measure different timberland attributes
both qualitatively and quantitatively
(Thilagavathi1 and Nagendran, 2017).
The RS of forests has reached a
developmental stage that allows
practitioners to expend the largest
proportion of their efforts on information
generation, rather than data preparation
(White et al. 2016).

Nowadays there is a great variety of
RS data, with a wide range of resolutions
and many new types of sensors.
Nevertheless, the technology still has not
successfully been applied to real forest
management at a fully operational level
(Bolton et al. 2018). Possible reasons
could include operational cost, skilled
personnel, lack of technoogy and
institutional problems. Applications of RS
for forest management should be based
on operational knowledge and
experience and be embedded in regular
management operations. To reach this
goal, for many years, optical RS data
sets have been used for different forest
studies, mainly considering the global
and regional mapping (Enkhjargal et al.
2015).

Optical sensors usually use visible and
infrared radiation for imaging the forest
cover. Over the years, different studies
have provided knowledge on how
various forest related factors influence
the reflectance properties in the visible
and infrared portions of electro-magnetic
spectrum. In recent years, microwave
sensors have been widely used for forest
mapping and analysis. The radar
instruments image an area not
depending on the solar illumination and
are not affected by cloudy or rainy
conditions like optical sensors. They
usually operate in longer wavelengths
and provide information on the tree
structure of forested areas and suitable
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for mapping and monitoring over large
areas with high to moderate spatial
resolutions (Vafaei et al. 2015). Different
forest related research based on
classification methods have been carried
out by combining optical and microwave
images, because of their different
characteristics. Many of the authors
judged that the outputs provide the
promising results (Huang et al. 2009,
Morel et al. 2012, Amarsaikhan and
Ganchuluun, 2015).

The aim of this research is to conduct
a forest classification using optical and
radar images. For this purpose, a test site
located in northern Mongolia has been
selected. As RS data sources,
multispectral Landsat 8 images and
ALOS-2 PALSAR L-band HH polarization
data were used. To produce a land cover
map from the multisensor images, a
SVM and MLC techniques have been
used and compared.

Methods, Test Site and Data Sources

In the present study, the research
methods include such techniques as
geometric correction-georeferencing of
the space images, speckle suppression
of radar data, SVM, MLC methods. The
aim of the geometric correction is to
produce a geometrically corrected image
with a high level of positional accuracy.
In the meantime, the corrected image
should be georeferenced to a projected
coordinate system. In most cases, the
SAR images have a granular
appearance due to the speckle formed
as a result of the coherent radiation used
for radar systems. Therefore, the speckle
reduction is a very important step in
further analysis in microwave images
(Serkan et al. 2008, Amarsaikhan et al.
2012). The SVM is a classification
technique derived from the statistical
learning theory. It usually separates the
classes with a decision surface that
maximizes the margin between the
selected classes. The surface is often
called the optimal hyper-plane, and the
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data points closest to the hyperplane are
called support vectors (ENVI, 2009). The
basis of the MLC are the actual
frequencies of co-occurrence between
the selected class and observation
vectors. The method assumes that the
statistics for each class in each band are
normally distributed and calculates the
probability that a given pixel belongs to a
specific class. Unless the user selects a
probability threshold, all pixels are
classified. Each pixel is assigned to the
class that has the highest probability. If
the highest probability is smaller than a
threshold you specify, the pixel remains
unclassified (Nyamjargal et al. 2019).
The test area is located in Khuvsgul
aimag of the northern part of Mongolia
and it borders with Russian Federation.
The aimag is famous with its freshwater
and deep lake of Khuvsgul and different
mountain ranges, isolated and deep
forests and peculiar customs of many
ethnic groups. The south and southwest
are dominated by the round-topped
Tarvagatai, Bulnai and Erchim sub-
ranges of the Khangai massif. The areas
west and north of Lake Khuvsgul are
formed by the alpine Khoridol Saridag,
Ulaan Taiga, and Munkh Saridag
mountains. The center and east parts are
less mountainous, but still hilly. The
mountain slopes in the area are clothed
with boreal taiga forest. The taiga zone
experiences more precipitation and
lower temperatures than most of
Mongolia, therefore plant growing period
is comparatively short. It forms the most
southern extension of the east Siberian
taiga and consists mainly from larch and
pine trees and rich in mosses and
lichens. Here are found a great number

of medical herbs, such as peony,
liquorice, astragalus, wild rose,
saussurea involucrata, hawthorn,

valerian, thyme, thermopsis (Batsukh,
2008).

R . N
Landsat 8 image of the test area
(R=B5, G=B4, B=B3).

In the study, as data sources, Landsat
8 data of 03 September 2019 and ALOS-
2 PALSAR L-band HH polarization
image of 25 July 2018 have been used.
The Landsat 8 data has nine reflective
bands (B1: 0.43-0.45um, B2: 0.45-
0.51um, B3: 0.53-0.59um, B4: 0.64—
0.67um, B5: 0.85-0.88um, B6: 1.57-
1.65uym, B7: 2.11-2.29um, B8: 0.50-
0.61pm and B9: 1.36-1.38um). The
spatial resolution is 30 m for all
multispectral bands, but panchromatic
band 8 has a spatial resolution of 15 m
(Munkhdulam et al. 2019). In the present
study, channels 2,3,4,5,6,7 have been
used. ALOS-2 PALSAR is the second of
the Japanese ALOS Programme satellite
and the data has a spatial resolution of
25m. The PALSAR-2 became a unique
and highly useful sensor achieving a high
resolution, wide swath width and image
quality, expanding its transmission
power and bandwidth, and adopting new
technologies such as dual-beam
receivers, complex chirp modulations,
and highly efficient data compression
(Amarsaikhan et al. 2015). In addition, a
topographic map of 1986, scale 1:100,000
and a forest taxonomy map of 1984, scale



1: 500,000 have been used. Figure 1
shows a Landsat 8 image of the test site,
and some examples of its land cover.

Results and Discussion

In the beginning, the multispectral
Landsat 8 images were geometrically
corrected to a UTM map projection using
a topographic map of the study area, scale
1:100,000. The ground control point
(GCP)s have been selected on clearly
delineated sites of the lake corners and
other clear sites. In total 15 points were
selected. For the transformation, a second
order transformation and nearest
neighbour resampling approach have
been applied and the related root mean
square error (RMSE) were 0.98 pixels. In
order to geometrically correct the PALSAR
image, 16 more regularly distributed
GCPs were selected comparing the
locations of the selected points with other
information such as Landsat ETM+
image, topographic map and forest
taxonomy map. Then, the microwave
image was georeferenced to a UTM map
projection using the selected topographic
map of the study area. For the actual
transformation, a second order
transformation and nearest neighbour
resampling approach were applied and
the related RMSE was 1.29 pixel. The
transformation of the SAR image’'s RMSE
exceeded 1 pixel, because on the selected
microwave image it was not easy to
determine the exact locations likewise the
optical data.
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Figure 2. The ALOS-2 PALSAR image of the
test area.

Then, in order to reduce the speckle
three different speckle suppression
techniques such as local region, frost
and gammamap filters (ERDAS, 2007) of
3x3 size were applied to the SAR image
and compared in terms of delineation of
forest and other texture information. After
visual inspection of each image, it was
found that the selected gammamap filter
created the best image in terms of
delineation of different features as well
as preserving content of texture
information. After the speckle
suppression, the PALSAR image was
added to the optical bands, thus forming
multisource data sets. Figure 2 shows a
georeferenced SAR image of the test site.

Before applying the decision-rule, in
order to define the sites for the training
signature selection, several areas of
interest (AOI) representing the selected
classes (i.e., coniferous forest,
deciduous forest, grassland, light sail,
dark soil and water) have been selected.
As the data sources included both optical
and SAR features, the fused images
were very useful for the determination of
the homogeneous AOI as well as for the
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initial intelligent guess of the training
sites. The separability of the training
signatures was firstly checked in feature
space and then evaluated using JM
distance (Mather and Koch, 2010). After
the investigation, the samples that
demonstrated the greatest separability
were chosen to form the final signatures.
The final signatures included about 614-
4071 pixels. For the classification, the
following feature combinations were
compared:

1. Visible and near infrared bands of
Landsat 8 data.

2. All spectral bands of Landsat 8 data.

3. ALOS PALSAR and full Landsat 8
data.

To increase the reliability of the
classification, to the initially classified
images, a fuzzy convolution with a 3x3
size window was applied. The fuzzy
convolution creates a thematic layer by
calculating the total weighted inverse
distance of all the classes in a
determined window of pixels and
assigning the centre pixel the class with
the largest total inverse distance
summed over the entire set of fuzzy
classification layers that is classes with a
very small distance value will remain
unchanged while the classes with higher
distance values might change to a
neighboring value if there are a sufficient
number of neighboring pixels with class
values and small corresponding distance
values (ERDAS, 2007).

The visual inspection of the fuzzy
convolved images indicated that there

are some improvements on the borders
of the neighboring classes that
significantly influence the separation of
the decision boundaries in
multidimensional feature space. The final
classified images using both SVM and
MLC are shown in Figure 3(a—f). As seen
from the Figure 3(a—c), the classification
results of the original Landsat bands give
the worst results, because there are high
overlaps among grassland and forest
classes. However, these overlaps
decrease on other images for the
classification of which SAR and optical
bands have been used.

For the accuracy assessment of the
classification results, the overall
performance has been used. This
approach creates a confusion matrix in
which reference pixels are compared
with the classified pixels and as a result
an accuracy report is generated
indicating the percentages of the overall
accuracy (Amarsaikhan et al. 2012). As
ground truth information, different AOls
containing 5,879 purest pixels have been
selected. AOIs were selected on a
principle that more pixels to be selected
for the evaluation of the larger classes
such as grassland and coniferous forest
than the smaller classes such as
deciduous forest and dark soil. The
overall classification accuracies for the
selected classes in different band
combinations are shown in Table 1.
From the Table 1, it is seen that the
performance of the combined use of
optical and SAR data sets was better that
the other combinations.
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Figure 3. Comparison of the

classification results for the selected

classes:

(a) MLC image using vis/NIR bands of
Landsat 8,

(b) MLC image using all spectral bands
of Landsat 8,

(c) MLC image using SAR and Landsat
8,

(d) SVM classified image using vis/NIR
bands of Landsat 8,

(e) SVM classified image using all
spectral bands of Landsat 8,

() SVM classified image using SAR
and Landsat 8.

Before applying the decision-rule, in
order to define the sites for the training
signature selection, several areas of
interest (AOI) representing the selected
classes (i.e., coniferous forest,
deciduous forest, grassland, light soil,
dark soil and water) have been selected.
As the data sources included both optical
and SAR features, the fused images
were very useful for the determination of
the homogeneous AOI as well as for the
initial intelligent guess of the training
sites. The separability of the training
signatures was firstly checked in feature
space and then evaluated using JM
distance (Mather and Koch, 2010). After
the investigation, the samples that
demonstrated the greatest separability
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were chosen to form the final signatures.
The final signatures included about 614-
4071 pixels. For the classification, the
following feature combinations were
compared:

1. Visible and near infrared bands
of Landsat 8 data.

2. All spectral bands of Landsat 8
data.

3. ALOS PALSAR and full Landsat
8 data.

To increase the reliability of the
classification, to the initially classified
images, a fuzzy convolution with a 3x3
size window was applied. The fuzzy
convolution creates a thematic layer by
calculating the total weighted inverse
distance of all the classes in a
determined window of pixels and
assigning the centre pixel the class with
the largest total inverse distance
summed over the entire set of fuzzy
classification layers that is classes with a
very small distance value will remain
unchanged while the classes with higher
distance values might change to a
neighboring value if there are a sufficient
number of neighboring pixels with class
values and small corresponding distance
values (ERDAS, 2007).

The visual inspection of the fuzzy
convolved images indicated that there
are some improvements on the borders
of the neighboring classes that
significantly influence the separation of
the decision boundaries in
multidimensional feature space. The final
classified images using both SVM and
MLC are shown in Figure 3(a—f). As seen
from the Figure 3(a—c), the classification
results of the original Landsat bands give
the worst results, because there are high
overlaps among grassland and forest
classes. However, these overlaps
decrease on other images for the
classification of which SAR and optical
bands have been used.

For the accuracy assessment of the
classification results, the overall
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performance has been used. This
approach creates a confusion matrix in
which reference pixels are compared
with the classified pixels and as a result
an accuracy report is generated
indicating the percentages of the overall
accuracy (Amarsaikhan et al. 2012). As
ground truth information, different AOls
containing 5,879 purest pixels have been
selected. AOIs were selected on a
principle that more pixels to be selected
for the evaluation of the larger classes
such as grassland and coniferous forest
than the smaller classes such as
deciduous forest and dark soil. The
overall classification accuracies for the
selected classes in different band
combinations are shown in Table 1.
From the Table 1, it is seen that the
performance of the combined use of
optical and SAR data sets was better that
the other combinations.

Table 1. Classification accuracies.

o Overall

Feature combinations
accuracy

MLC (Landsat-
Vis/NIR) y6.0d
MLC (Landsat-All
bands) 79.98
MLC (Landsat-
PALSAR) e
SVM(Landsat-Vis/NIR) 88.05
SVM(Landsat-All
bands) 89.74
SVM(Landsat-
PALSAR) R34

Conclusions
The aim of this study was to conduct a
classification of the forest site in
Khuvsgul area, northern Mongolia using
refined spatial features. As data sources,
multispectral Landsat 8 images, ALOS-2
PALSAR L-band HH polarization data, a
topographic map, and a forest taxonomy
map were used. To produce the updated
land cover map from the multisensor
images, the SVM and MLC techniques
were compared. As could be seen from
the overall classification results, the

combined application of optical and SAR
data sets produced a better result than
the single source image. Moreover, it
was seen that the performance of the
SVM was better than the performance of
the MLC. Overall, the study
demonstrated that the advanced optical
and microwave RS could be reliable
tools for forest planning and
management.
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