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a b s t r a c t

The 137Cs technique for estimating net time-integrated soil redistribution is valuable for understanding
the factors controlling soil redistribution by all processes. The literature on this technique is dominated
by studies of individual fields and describes its typically time-consuming nature. We contend that the
community making these studies has inappropriately assumed that many 137Cs measurements are
required and hence estimates of net soil redistribution can only be made at the field scale. Here, we
support future studies of 137Cs-derived net soil redistribution to apply their often limited resources
across scales of variation (field, catchment, region etc.) without compromising the quality of the esti-
mates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling
design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory
measurements. Geostatistical mapping of net (1954e2012) soil redistribution as a case study on the
Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the
literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil
redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of
variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same
resources, estimates from many fields could have been provided and would elucidate the cause of dif-
ferences within and between regional estimates. We recommend that future studies evaluate carefully
the sampling design to consider the opportunity to investigate 137Cs-derived net soil redistribution
across scales of variation.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Soil redistribution by the processes of wind, water and tillage is
an essential component of Earth System Models (e.g., Shao et al.,
2011) and controls soil processes at the nexus of Land Surface
Models (LSMs; Chappell et al., 2014). For example, soil erosion and
deposition influences soil organic carbon (SOC) stock change which
are excluded from SOC cycling and Land Surface Models (LSMs).
Soil erosion removes preferentially fine, nutrient- and SOC-rich
material which may result in significant change in terrestrial eco-
systems (Gregorich et al., 1998). These processes change the soil
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surface characteristics over time and provide a physical basis for
change in energy and water balances. These processes and their
dynamics controlled by land use and management change are also
excluded from LSMs. The exclusion of soil erosion from these
models is likely caused by a lack of awareness by the modelling
community of the significance of these processes (Chappell et al.,
2014) perhaps compounded by a dearth of soil redistribution in-
formation for the initial boundary conditions and/or validation of
the models. For example, the largest map of net soil redistribution
is available only for Australia (5 km pixel; Chappell et al., 2011a,b)
and to our knowledge the only global maps provide gross soil
erosion using the universal soil loss equation (Van Oost et al., 2007;
Doetterl et al., 2012). This provides an opportunity for environ-
mental scientists interested in soil redistribution to influence the
development of regional and global land surface processes and
their significance under a changing climate. The opportunity re-
quires workers to apply their resources across scales of variation
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without compromising the representation of the variation at any
scale. Here we support this opportunity by demonstrating how
careful consideration of sampling design and objective can be used
to produce cost-effective solutions to cut across scales of variation.

The benefits are well-established in this and other journals of
the 137Cs technique to estimate net, time-integrated soil redistri-
bution by all processes (Ritchie and McHenry, 1990). When not
confined to individual fields, many 137Cs studies have sampled soil
using transects (cf. Walling and Quine, 1991; Sutherland and de
Jong, 1990; Loughran et al., 1993). In either case, these studies as-
sume that many samples are required to represent adequately the
highly variable patterns of soil redistribution by wind, water and
tillage (Chappell et al., 2011b). Many studies appear not to separate
the requirement to estimate the spatial mean from that of mapping
the spatial variability. Consequently, samples within fields are often
obtained at the nodes of a regular grid, because little is known a
priori about the spatial scale of variation in soil redistribution
processes (Chappell et al., 2003a,b). However, sampling grids are
usually coarse, because the measurement of 137Cs is time-
consuming and only few samples may be measured for a given
budget and samples may not represent adequately the variation.
Use of a fine grid is typically prohibitively expensive with the 137Cs
technique and depending on the scale of variation may involve
considerable sampling redundancy (Chappell and Warren, 2003).
Over areas larger than an individual field, several workers have
recognised the difficulty in obtaining sufficient samples of 137Cs to
represent the spatial variation in soil redistribution processes (de
Roo, 1991; Chappell, 1996, 1998). Chappell et al. (1996, 1998) and
Chappell (1999) showed that the sampling design must represent
the variability in the spatial scales of soil redistribution processes to
provide an unbiased estimate of erosion and deposition. This
sampling approach is called ‘design-based’ by de Gruijter et al.
(2006) and has been combined with geostatistics for use with the
137Cs technique (Chappell, 1998; Mabit et al., 1998; Chappell and
Warren, 2003; Mabit et al., 2008; Chappell et al., 2011a,b).
Design-based sampling differs markedly from traditional (grid-
based single field) soil 137Cs studies, by sampling to develop a
reliable description (model) of the variability in soil 137Cs over
space and estimate soil redistribution at unsampled locations. For
example, Chappell et al. (2011b) used only 200 samples to map
137Cs-derived net (1950se1990) soil redistribution and its uncer-
tainty across Australia. This example uses an approach which many
workers unfamiliar with geostatistics find unpalatable, but which
has a long-established and practical history across the environ-
mental sciences. Notably, design-based sampling for soil redistri-
bution mapping was excluded from the ‘Handbook for the
assessment of soil erosion and sedimentation using environmental
radionuclides’ (Zapata, 2002). For many, sampling design is not
considered further than basic sampling theory, which is somewhat
paradoxical given the significant opportunity offered by the
broader field of ‘model-based’ sampling (de Gruijter et al., 2006) to
estimate 137Cs-derived soil redistribution across scales of variation.
Model-based sampling may be considered the antithesis of design-
based sampling, but there is much commonality between these
approaches and we shall return to them and their hybrid later.

We contend here that the main hurdle to making estimates of
137Cs-derived soil redistribution at large scales (e.g., regions either
within or between continents) is the pre-occupation, evident in the
literature, with soil redistribution within fields compounded by (i)
the unquestioned assumption that many soil 137Cs samples are
required to be measured and hence sampling is too time-
consuming/expensive to conduct across scales of variation; (ii) an
incomplete or poor understanding of sampling theory and the lack
of an explicit decision to estimate a spatial mean or to map the
spatial variation. We tackle these contentions here and (a) outline a
straight-forward and rigorous statistical hybrid of ‘model-based’
and ‘design-based’ sampling theory based on the recent compre-
hensive review by de Gruijter et al. (2006); (b) provide a pragmatic
application of the hybrid sampling design using a case study in
China's Loess Plateau; (c) compare the hybrid design to traditional
sampling approaches (transect and arbitrary regular grids); (d)
show the benefits of geostatistical mapping and (e) develop an
information-cost function for each sampling design to support our
recommendation for future sampling of soil 137Cs to estimate net
soil redistribution across scales of variation.

2. Sampling and analysis

2.1. Design-based sampling for geostatistics

A variety of statistical and geostatistical methods exist to esti-
mate environmental data on e.g., a fine grid using sparsely sampled
data (Isaaks and Srivastava, 1989; Webster and Oliver, 2001). Sta-
tistical approaches to interpolate SOC and net soil redistribution,
such as a (multiple) linear regression, perform well under some
circumstances. Geostatistical approaches account for the spatial
dependence (autocorrelation) of the property of interest. This
spatial autocorrelation can be quantified using an empirical semi-
variogram (or variogram) of the sampled data, where the semi-
variance is plotted as a function of the separation distance. For a
dataset z(x1), z(x2), …, z(xn), with separation distance (lag h) the
semi-variance:

gðhÞ ¼ 1
2mðhÞ

XmðhÞ

j¼1

�
z
�
xj
�� z

�
xj þ h

��2
; (1)

where m(h) is the number of paired comparisons for a given lag,
and g(h) is the semi-variance of the lag distance h. Prior to the
calculation of the variograms 137Cs was transformed using log10 to
standardise the spatial variance. The net soil redistribution was
approximately normally distributed with a skewness coefficient
less than 1 and it was deemed unnecessary to transform these data.
We calculated the experimental variograms for these two vario-
grams using the average semi-variance. These variograms were
fitted, using weighted least squares, with several models autho-
rized for kriging. The model that fitted best, in the least squares
sense, was selected using the square root of the mean squared
difference (RMSE) between the model and the observations. The
parameters of the fitted models describe the structure of spatial
variation (e.g., Chappell and Oliver, 1997) and were used with
kriging to make estimates at unsampled locations. Due to the
limited number of samples it was assumed that the variation was
isotropic and only an omni-directional variogram was calculated
and fitted.

We evaluated the performance of the OK predictions using
cross-validation because we had too few samples to create an in-
dependent validation dataset. We used R-squared, the mean error
(ME), the rootmean square error (RMSE) of prediction as criteria for
the comparison.

2.2. Model-based statistics

Themeasurement costs of each sample at one location (e.g., 3e4
depths) make it prohibitively expensive to obtain and measure
137Cs at many locations across a field. A straightforward solution to
represent adequately the mean 137Cs and net soil redistribution for
the field, is to create a composite of a given number of soil samples
hereafter called aliquots (n). Since only the composite soil is
measured the number and hence cost of analyses is reduced. The
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key is to ensure that samples are representative of the spatial
variation. Simple random sampling may be adopted across a field
prior to creating a composite. However, a single composite does not
in itself convey information about variability in that compositing
approach. The compositing should be repeated a number of times
to provide an estimate of the sampling variance. With simple
random sampling the sampling variance is usually larger than with
most other types of design at the same costs (Brus et al., 1999; de
Gruijter et al., 2006). With stratified simple random sampling the
field may be divided into equal area strata and simple random
sampling applied to identify soil collection locations within each
stratum. The strata should be approximately uniform in area to
maximise the benefits. In common with all randomised or
probability-based sampling, locations may fall within previously
excluded zones e.g., rivers, area around trees etc. In these situations
procedures must be used to safeguard against the introduction of
bias due to the relocation of a sample location to within the sam-
pling area. Prior information may be used to stratify e.g., soil type,
topography etc. In the absence of any other information, a regular
grid may be used to stratify the field prior to sampling. In this case,
the strata have equal area and therefore equal volumes of soil
material can be collected at the locations. In practice, stratification
is formed from strata that are as homogeneous as possible. Two, or
preferably more, aliquots may be placed within each stratum and
these aliquots can form composites with their counterparts in the
remaining strata. Once the composites are formed, well mixed and
sub-sampled, they can be measured and used to estimate the
variance of the composite samples. Following de Gruijter et al.
(2006), the mean of the study area for each composite is esti-
mated by:

bzSt ¼ XH
h¼1

ahbzh; (2)

where H is the number of strata, ah is the relative area of stratum h,bzh is the sample mean and St indicates the stratified simple random
sampling design. The sampling variance of bzSt can be estimated by

bV�bzSt� ¼
XH
h¼1

a2h
bV�bzh�; (3)

where bV ðbzhÞ is the estimated variance of bzh and is given by

bV�bzh� ¼ 1
nhðnh � 1Þ

Xnh

i¼1

�
zhi � bzh�2; (4)

and nh is the sample size in stratum h. The standard error of the

estimated mean is estimated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibV ðbzStÞq

. An unbiased estimator of
the spatial variance S2(z) is:

cS2 ¼ c
z2St �

�bzSt�2 þ bV�bzSt�; (5)

where c
z2St denotes the estimated mean of the target variable

squared (z2), obtained in the same way as bzSt (Eq. (5)) but using
squared values (de Gruijter et al., 2006). Notably, the total variance
includes the measurement error which here we assume includes
the measurement of 137Cs and the calibration to estimate net soil
redistribution and set constant Vlab ¼ 5 (t ha�1 yr�1)2.

If prior information on the spatial variability is available in the
form of a variogram, Domburg et al. (1994) demonstrated how it
may be used to estimate the sampling variance of the sample mean
of an area. Brus and Noij (2008) showed how the sampling variance
may be estimated from stratified simple random sampling using
composites:

VSt

�bz� ¼
XH
h¼1

w2
h
gh
nh

¼ 1
H2

XH
h¼1

w2
h
gh
nh

; (6)

where H is the number of strata (the number of aliquots per com-
posite), wh is the relative area of stratum h, gh is the mean semi-
variance within stratum h and nh is the number of sample points
per stratum (number of composites). Since the strata have equal
area and in this case are assumed to be as compact as possible, Brus
and Noij (2008) suggest that the mean semi-variances within strata
are approximately equal for the strata. They approximated the
mean semi-variance using the mean semi-variance within a square
of the same area.

There are two approaches to calculating the mean values g of
the point variogram gðhÞ: numerically using a computer or by
analytical solutions in successive stages (Journel and Huijbregts,
1978). We used the former approach, assumed that the sample
support was square (as in our case study below) and calculated the
mean values g of the point variogram gðhÞ for a range of block sizes
which represented the subdivision of a field into smaller strata.
Notably, an approximation to the mean values g is available to
simplify for practitioners this stage of the analysis (cf Chappell and
Viscarra Rossel, 2013).

In the absence of spatial information on the soil 137Cs and/or net
soil redistribution the sampling design is ill-informed. The practi-
tioner can choose to either approximate the spatial information or
proceed without the spatial information. In the former case, in-
formation may be used from other studies on the spatial variability.
This is a form of chronosequence andmay introduce an uncertainty
depending on the unknown similarity in the spatial structure be-
tween study sites. In the latter case, the practitioner will at the
outset allocate resources to sampling, largely unguided. However,
after the measurements have beenmade using the stratified simple
random sampling design above, the performance of the design can
be examined and used to form the basis for the adaptation of future
sampling, perhaps as part of a monitoring design or a second stage.
This is possible because the variance of the composite means pro-
vide an estimate of the sampling variance. This estimate of the
sampling variance can be used with the actual number of strata and
composites to estimate the gh and to subsequently predict the
sampling variance (rearranging Eq. (6)). If the predicted sample
variance is smaller than the measured estimate of the sample
variance then the sampling was adequate. If the predicted sample
variance is larger than the measured estimate of the sample vari-
ance, more composites can be obtained. In the extreme case where
the predicted sample variance is substantially larger than the
measured estimate of the sample variance more strata and poten-
tially more composites must be used. It can be difficult to adapt the
sampling strategy in this case. It is better to avoid its occurrence at
the outset by using as many strata and composites as can reason-
ably be afforded.

2.3. Optimising sampling using cost

In many cases it may be desirable to optimise sampling by
minimising the variance for a given maximum allowable cost or to
minimise the cost for a given maximum allowable variance. We
followed Brus and Noij (2008) simple cost model (C) to demon-
strate how cost depends on sampling design:

C ¼ C0 þ Cfld þ Clab;
Cfld ¼ 2� H � n� t � cfld;
Clab ¼ 2� H � clab;

(7)



Table 1
Approximated values for the cost parameters for sampling and measurement.

Parameters Cost

Fieldwork fixed cost (C0) 1000 USD
Time (t per hour) to sample one aliquot 0.33
Fieldwork costs (cfld cost per hour) 60 USD
Laboratory costs (clab cost per sample) 50 USD
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where C0 are the fixed costs which are independent of the number
of composites (H) and aliquots (n) i.e., costs of preparing the
fieldwork, travel costs, equipment costs, etc., t is the time in hours
needed to sample one aliquot, cfld are the costs of fieldwork per
hour and clab are the costs of the laboratory measurement per
composite. The optimal combination of n and H is independent of
C0, so this was separated from the processing. The Clab cost is that
associated with the receipt, preparation and measurement of soil
137Cs, soil bulk density and the calibration of 137Cs to net soil
redistribution. In the absence of definitive information for these
parameters, we estimated the parameter values in Table 1.

3. Case study

3.1. Study area

To determine the variogram, we chose to use soil samples
collected from the cultivated land of the Chinese Loess Plateau,
located near Nanwang village, Shaanxi province in China (35�

3.3690N, 109� 38.9730E). The loess soil is highly erodible and has
been highly dissected by gullying in the past leaving steep slopes.
Fig. 1. Location of the study site in the Loess Plateau of northern China and a digit
Since 1998, widely adopted terrace construction (<1 ha) in the
steep slopes has reduced soil erosion. The entire region of the Loess
Plateau is divided into fields of this typically small size. Although
small relative to other regions, the field provides results of signif-
icance for other scales of sampling design, resource allocation and
research objectives.

Our field site (35m� 30m) had a slope with an average angle of
9� (range: 2�e19�) and was surrounded by other similarly sized
terraced fields. The site covers an area of 721 m2 and its altitude
ranges from 723 m to 730 m (Fig. 1). The annual temperature is
9.2 �C and the average annual precipitation reaches 500 mm with
70% occurring from July to September (Li et al., 2003, 2007). The soil
type is Calcaric-Cambisols with an average texture involving 6%
sand, 63% silt and 25% clay. Corn (Zea mays L.) and winter wheat
(Triticum aestivum L.) are the major crops cultivated in the study
area.

3.2. Traditional (regular grid node) soil sampling

In April 2011, we established an approximately regular square
3 m grid using six transects parallel to the main downslope direc-
tion of the field. Along each transect, 7e8 locations (grid nodes) for
sampling were identified. Soil sampling was conducted at each grid
node using a hand operated core sampler (8 cm internal diameter).
A total of 50 samples were collected to a depth of between 30 cm
and 45 cm and a composite of the sampled soil was produced. In
addition, three soil cores were collected at 5 cm depth increments
to provide detailed soil profile information at selected locations
(upper, middle, lower). A reference site for determining the initial
137Cs inventory was selected in uncultivated grassland near the
al elevation model (DEM) of the topography showing the sampling locations.
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study area. All sampling points were geo-referenced by differential
Global Positioning System (dGPS) in the field to produce a digital
elevation model (Fig. 1).

For clarity, we do not advocate this form of sampling because of
the vagaries described above associated with grid spacing (cf
Introduction). It is used here as one approach to provide the vario-
gram of 137Cs and net soil redistribution to enable the demonstra-
tion of the hybrid design-based and model-based sampling design.
3.3. Sample analysis

Soil samples were air-dried, weighed, and divided into two
parts, one passing through a 0.15 mm sieve for measurement of soil
chemical and physical properties as part of a larger study. The other
part was passed through a 2 mm sieve for measurement of 137Cs.
The mass activity of 137Cs (Bq kg�1) was measured by gamma
spectrometry at 662 keV using a hyper-pure coaxial Ge detector
coupled to a multichannel analyser (Li et al., 2003). Counting time
was set at 40,000 s to provide a measurement precision of ±5% (Li
et al., 2006). Calibration and quality control were performed
following the protocol of Shakhashiro andMabit (2009). The results
of 137Cs (Bq kg�1) activities were converted to areal activities
(Bq m�2) using the total weight of the bulked core sample and the
sampling area of the corer.
Fig. 2. The depth distributions of 137Cs activities at the reference site.
3.4. 137Cs-derived net (1954e2011) soil redistribution

The anthropogenic radionuclide 137Cs (half-life of 30.2 years)
produced during the atmospheric testing of nuclear weapons has
been used successfully as a tracer of net soil redistribution for more
than 50 years all over the world (Mabit et al., 2013). This radio-
isotope is non-exchangeable and strongly fixed by fine soil and
sediment particles (Mabit et al., 2008). This 137Cs technique esti-
mates net, time integrated soil redistribution by all processes of
wind, water and tillage. It is commonly used with a single visit to a
study area by establishing a reference 137Cs inventory at an un-
disturbed nearby location for use in the conversion of 137Cs areal
activities (Bq m�2) into net soil redistribution (t ha�1 yr�1). How-
ever, awareness and requirements are growing for the use of the
137Cs technique as part of a repeated sampling or monitoring design
(Kachanoski and de Jong, 1984; Chappell et al., 2012; Porto et al.,
2014). Our study used the traditional approach to the use of the
137Cs technique and we established a 137Cs reference inventory
from uncultivated grassland to provide an estimate of the initial
137Cs fallout.

The Mass Balance Model II (Walling and He, 1997; Walling et al.,
2003, 2011) was used to estimate net soil redistribution at each
sampling location. The parameters of this model were determined
based on local conditions and available information as follows:
particle size factor (1), proportion factor (0.5), relaxation depth
(4 kg m�2), and the year tillage commenced (1954). A tillage depth
factor of 306.5 kg m�2 was established by multiplying the tillage
depth (0.25m) by the bulk density (1226 kgm�3). Themass balance
model assumes that a sampling point with a total radionuclide
inventory A (Bq m�2) less than the local reference inventory Aref
(Bq m�2) represents an eroding site, whilst a point with a total
radionuclide inventory greater than the local reference inventory is
assumed to be a depositional site (Walling et al., 2011; Porto et al.,
2011). For an eroding point (A(t) < Aref), the change in the total 137Cs
inventory A(t) with time t can be represented as:

dAðtÞ
dt

¼ ð1� GÞIðtÞ �
	
lþ P

R
d



AðtÞ (8)
where A(t) ¼ cumulative 137Cs activity per unit area (Bq m�2);
R ¼ erosion rate (kg m�2 yr�1); d ¼ cumulative mass depth rep-
resenting the average plough depth (kg m�2); l ¼ decay constant
for 137Cs (yr�1); I(t) ¼ annual 137Cs deposition flux (Bq m�2 yr�1);
G ¼ percentage of the freshly deposited 137Cs fallout removed by
erosion before being mixed into the plough layer; P ¼ particle size
correction factor. For a depositional point (A(t) > Aref), assuming
that the excess 137Cs inventory Aex (Bq m�2) (defined as the
measured total inventory A(t) less the local direct fallout input Aref)
at an aggrading point is due to the accumulation of 137Cs associated
with deposited sediment, the excess 137Cs inventory can be
expressed as:

Aex ¼
Z t

t0
R0Cdðt0Þe�lðt�t0Þdt0 (9)

where R0 (kg m�2 yr�1) is the deposition rate and Cd(t0) (Bq kg�1) is
the 137Cs concentration of deposited sediment.

4. Results

4.1. 137Cs reference inventories

Soil profiles were collected for the reference inventory at an
uncultivated site where no net soil redistribution had occurred
since the mid 1950s (Fig. 2). The 137Cs activity soil profile showed a
monotonic (exponential) decline with depth. The shape of this
profile conforms to that expected for an undistributed location,
with 80e90% of the 137Cs inventory concentrated in the top 15 cm.
The reference inventory of this study sites was established as
1266 Bq m�2.

4.2. Spatial variability of 137Cs-derived net soil redistribution

A statistical summary of the measurements of 137Cs and soil
erosion is shown in Table 2. The net soil redistribution derived from
the 137Cs measurement relates to 50-years since the onset of the
main period on the bomb fallout (Zapata, 2002), whereas the
measured sediment eroded and deposited within the field is based
on measurements undertaken during the period 1954e2011. The
estimated net soil redistribution (NSR) between 1954 and 2011
ranged from a soil loss of 110 t ha�1 yr�1 to a deposition of
30 t ha�1 yr�1 with a mean 50.09 ± 7.43 t ha�1 yr�1.

Variogram parameter values for the soil properties are shown in
Table 3. Variogram models for 137Cs and NSR1954e2011 exhibited
similar spatial structure with a small nugget and small nugget/sill
ratio (Fig. 3) which indicated their suitability for mapping using
ordinary kriging (OK). The root mean square error (RMSE) of 137Cs
computed from the cross-validation of OK is smaller than for



Table 3
Fitted variogram parameters and cross-validation results using ordinary kriging
(OK) for 137Cs (Log10(Bqm�2)) and net (1954e2011) soil redistribution (NSR1954e2011,
t ha�1 yr�1).

Variables Model Range (m) Nugget Sill Nugget/
Sill (%)

R2 RMSE

137Cs Exp 38.79 0.022 0.796 0 0.506 0.238
NSR1954e2011 Sph 37.53 82 1786 6 0.491 38.08

Table 2
Summary statistics for measured 137Cs and net soil redistribution within the field.

Variable Number Min Max Mean StDeva

137Cs (Bq m�2) 50 113.69 1730.34 677.65 472.21
Estimates of net soil

redistribution (t ha�1 yr�1)
50 �114.10 35.17 �34.65 38.04

Interpolated net soil
redistribution (t ha�1 yr�1)

2891 �124.69 24.38 �57.65 38.41

a The standard deviation.
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NSR1954e2011. The R2 computed from the cross-validation of OK are
0.51 and 0.49 for 137Cs and NSR1954e2011, respectively. This indicates
unbiased prediction of 137Cs and a small tolerable bias in the pre-
diction of NSR1954e2011.

Most of the soil 137Cs cores (42 points) have a reduced inventory
relative to the reference site, suggesting that net soil loss signifi-
cantly dominates this agricultural site. However, eight soil cores
had larger amounts of 137Cs than the local reference value, indi-
cating net soil deposition. They are located along the northeast
Fig. 3. Experimental (dots) and fitted (line) semivariogram for 137Cs inventory (log10(Bq m
maps using ordinary kriging for 137Cs (Bq m�2; b), and net soil redistribution estimated fro
boundary of the lowest slope position and in a depression situated
in the middle slope. Large amounts of soil erosion are evident on
the divergent middle slope and upper slope area within the field.
Locationswithmost deposition are near the outlet area of the lower
slope along the northeast boundary and the depression on the
middle slope. The map of net soil redistribution provided 2891
estimates at unsampled locations and the mean and standard de-
viation were �57.65 t ha�1 yr�1 and 38.41 t ha�1 yr�1, respectively.
We note that spatial variability on uncultivated land is likely larger
than our case study on cultivated land.

4.3. Cost

In the absence of definitive information about sampling cost, we
used the values of the cost parameters in Table 1 to estimate the
total cost (C; excluding fixed costs) for stratified random sampling
for a range of composites and strata. The results show that the cost
of taking more composites increases at a faster rate than the cost of
using more strata (see Fig. 4).

4.4. Model-based sampling statistics

We calculated the point variogram gðhÞ for net soil redistribu-
tion and estimated the mean values g for a range of strata size
(Fig. 5) which subdivide the field into smaller strata. We estimated
the number of composites to achieve the measured variance of net
soil redistribution (1447 t ha�1 yr�1)2. The results showed that
when stratifying the study area into blocks of 5.5 m size (approx-
imately the size of our regular grid) only 1 composite was required
to achieve the variance. However, dividing the study area into
�2); a) and NSR1954e2011 estimated from 137Cs measurement (t ha�1 yr�1; c). Predicted
m 137Cs (NSR1954e2011, t ha�1 yr�1; d).



Fig. 4. Cost (excluding fixed cost) of fieldwork using the stratified simple random
sampling design and laboratory measurements using compositing.

Fig. 6. Variance of net soil redistribution (t ha�1 yr�1)2 for stratified simple random
sampling with various combinations of strata and composites. Note the vertical axis is
on the log scale.
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larger strata required many more composites to achieve the same
measured variance.

We used equation (8) to estimate the sampling variance of
stratified simple random sampling for various combinations of
strata and composites (Fig. 6). The smallest variance is associated
with the most strata (areas which divide up the study area) or most
composites (number of samples within each strata which are
subsequently combined). In practice, the only likely reason to have
many more composites than strata would be if the measurement
cost is many times larger than the fieldwork costs. In our situation
and most other situations many strata and few composites would
provide adequate sampling. Conversely, these results show that few
strata and few composites produce a very rapid increase in the
sampling variance which would undermine the ability to
adequately represent the true variance.

We used the above formulae (Eqs. (7) and (8)) to estimate the
sampling variance of various sampling designs (Table 4). The
original set of samples (on a regular grid) is equivalent to 50
composites within 1 strata and the sampling variance is conse-
quently small but the measurement cost is large. For comparison
the estimates made by geostatistical mapping on a fine grid pro-
duced a very small sampling variance for the same cost. Unsur-
prisingly, random samples across the study area produced a
sampling variance and measurement costs similar to those of the
regular grid. Of perhaps greater interest, is the finding that
Fig. 5. The mean values g of the point variogram gðhÞ for net soil redistribution are
shown for a range of stratum sizes which subdivided the field (30 m � 35 m) into
smaller strata. To achieve the net soil redistribution variance (1447 t ha�1 yr�1)2 of the
study area requires the displayed number of composites within each stratum. Note the
secondary y-axis is on the log scale.
stratifying the study area using a coarse grid (11 m) and taking only
one composite from each strata provided a substantially smaller
sampling variance and measurement cost than random sampling
and the original samples on a regular grid. The use of this design
with more composites reduced the sampling variance by an order
of magnitude. Stratifying the study area in to a fine grid (7 m),
similar to that of the original sampling, and randomly sampling
with only 18 samples, produced a sampling variance which is
equivalent to using 45 samples with a coarse grid.

5. Discussion and conclusion

The hybrid sampling design required the spatial auto-
correlations or variograms which describe the spatial structure of
137Cs and net soil redistribution. The variogram enabled us to
demonstrate the rigorous nature of the sampling design and the
cost-effective benefits it confers, particularly for time-consuming
environmental properties like radioactive nuclides. The variogram
could be borrowed from nearby or related studies or approximated
based on prior knowledge. We chose to use recent soil samples and
subsequent 137Cs measurements to calculate the variogram. Those
samples were obtained from the nodes of a regular grid using a
traditional sampling approach. For clarity, we do not advocate this
sampling design because of the vagaries of choosing the grid
spacing which can have considerable implications for sampling
performance. Instead, there are many examples in the literature of
design-based sampling to establish the variogram and to subse-
quently map net soil redistribution (cf Chappell andWarren, 2003).

The data we used are a special case in that many samples have
been obtained from a small area with relatively similar soil texture
and soil redistribution processes, typical of fields in the Chinese
Table 4
Summary statistics for sampling 137Cs-derived net soil redistribution.

Variable Composites Strata Stratum
size (m)

g Sampling
variance
(t ha�1 yr�1)2

Cost
($/m2)

Original samples
(regular grid)

50 1 5.0 314.15 6.28 3.3

Mapping
(regular grid)

2100 1 0.7 87.34 0.04 3.3

Random 9 1 32.0 319.09 35.45 0.6
Random 27 1 32.0 319.09 11.82 1.8
Random 45 1 32.0 319.09 7.09 3.0
Stratified random 1 9 11.0 164.71 2.03 0.2
Stratified random 3 9 11.0 164.71 0.68 0.7
Stratified random 5 9 11.0 164.71 0.41 1.1
Stratified random 1 18 7.6 140.17 0.43 0.4
Stratified random 2 18 7.6 140.17 0.22 0.8
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Loess Plateau. Consequently, the use of a fine regular grid (50
sample locations) adequately represented the spatial variation of
137Cs and net soil redistribution at this scale. Although a smaller
number of samples than recommended, the variograms showed a
smooth monotonic pattern consistent with those produced by
reliable variograms (Webster and Oliver, 1992). The similarity in the
spatial structure of variograms for 137Cs and net soil redistribution
is likely due to the scale of the data used in this case study. Other
workers have found differences in the spatial structure of vario-
grams for 137Cs and net soil redistributionwhich is likely associated
with the scale of the sources and magnitude of the variation. These
variograms produced maps which had tolerable cross-validation
statistics. The maps showed patterns of 137Cs and net soil redistri-
bution consistent with control by topography and removal from the
upslope and accumulation at the base of the slope. These patterns
are consistent with water erosion as the main factor driving the
overall decline in soil quality on this steep cultivated hillslope. It is
likely that tillage erosion has a comparable contribution to overall
soil quality on terraces over the last 50 years (Li and Lindstrom,
2001). The interpretation of the spatial variability of net soil
redistribution is not the focus of this paper. Our results demon-
strate that the spatial variation of net soil redistribution can be
produced using design-based geostatistics and produce valuable
understanding of processes (e.g., Chappell, 1999). However, the
production of these maps comes at considerable cost because soil
from each location must be measured for 137Cs. With limited re-
sources, we contend here that this has created a focus on processes
at the field scale and the neglect of net soil redistribution across
scales (Chappell and Warren, 2003; Chappell et al., 2011a,b).

Using the hybrid of design-based spatial variation information
(variogram) and model-based statistics demonstrates that sam-
pling variance can be reduced considerably relative to sampling for
mapping. This sampling approach provides for a robust estimate of
the mean 137Cs and net soil redistribution for the field at a fraction
of the cost of sampling for mapping. Sampling to estimate themean
and minimise sampling variance is best performed using stratifi-
cation to avoid clustering and ensure that spatial variability from
across the field is represented in the sampling. Here we provide a
very basic stratification to demonstrate its utility using a regular
grid which assumes no prior information on how to stratify.
However, stratification can make use of more or less sophisticated
spatial information e.g., topography, vegetation, soil property
spatial classifications etc. The compositing of spatial samples
considerably reduces measurement cost/time which is important
for 137Cs, particularly in the southern hemisphere and as its mea-
surement becomes more demanding over the next decade or so.

We suggest that future studies redress the balance in the
focus of 137Cs-derived net soil redistribution at the field scale by
adopting the hybrid sampling design to estimate the mean and
variance for individual fields or catchments. For example, the
resources that were used to obtain soil and measure 137Cs from
50 separate locations within the field could be applied to 50
fields within a catchment. This ability to refocus the nature of the
study is provided by sampling design. To demonstrate the limi-
tation of current field scale estimates for regional and global
assessments we extrapolate our estimate of 137Cs-derived net soil
redistribution. Soil erosion observed on cultivated steep lands in
the Loess Plateau was 50e80 t ha�1 yr�1 prior to 1998 (Zhang
et al., 1998). Since 1998, widely adopted terrace construction
(<1 ha) in the steep slopes was used to reduce soil erosion. Our
results show net (1954e2011) soil erosion of 50 t ha�1 yr�1,
consistent with previous estimates in the region (Li et al., 2007).
We multiplied this estimate of net soil redistribution by the area
of this region of the Loess Plateau (4.6 Mha) to estimate a net soil
redistribution of 250 Tg soil yr�1. Doetterl et al. (2012) revised
previous estimates of global soil erosion (year 2000). Their
extrapolation using gross erosion from the Universal Soil Loss
Equation suggested that for the Loess Plateau water erosion and
tillage erosion (combined) varied spatially between 5 and
15 t ha�1 yr�1. This soil erosion is considerably smaller than
previously published estimates in the region and the results from
this study. Doetterl et al. (2012) found that previous regional
estimates of soil erosion, some based on extrapolation of erosion
plot data, were between two to five times larger than their es-
timates. The differences in magnitudes were partly attributed to
bias in the extrapolation due to the use of unrepresentative
intensively eroding areas. Within the context of our study and
the region of the Loess Plateau, we suspect that erosion has been
under-estimated by Doetterl et al. (2012) due to their use of ca
10 km resolution topographic data and/or that their estimates for
the year 2000 are after the majority of soil erosion occurred
(prior to 1998) and after terracing reduced soil erosion in the
region.

If the resources expended on our individual field had instead
been allocated to 50 fields across the regionwewould have a better
understanding of, and be better able to interpret, the differences in
magnitudes and at least make recommendations for alternative
modelling for estimates of soil erosion across scales.
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