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ABSTRACT

Since the estimate of moisture stress coefficients (MSC) in the current Carnegie-Ames-Stanford-Approach
{CASA) model still requires considerable inputs from ground meteorological data and many soil param-
eters, here we present a modified CASA model by introducing the land-surface water index (LSWI) and
scaled precipitation to model the vegetation net primary productivity (NPP) in the arid and semiarid
climate of the Mongolian Plateau. The field-observed NPP data and a previously proposed model (the
Yu-CASA model) were used to evaluate the performance of our LSWI-based CASA model. The results
show that the NPP predicted by both the LSWI-based CASA model and the Yu-CASA model showed good
agreement with the observed NPP in the grassland ecosystems in the study area, with coefficients of
determination of 0.717 and 0.714, respectively. The LSWI-based CASA model also performed compara-
bly with the Yu-CASA model at both biome and per-pixel scales when keeping other inputs unchanged,
with a difference of approximately 16 g C in the growing-season total NPP and an average value of 2.3g C
bias for each month. This indicates that, unlike an earlier method that estimated MSC based entirely on
climatic variables or a soil moisture model, the method proposed here simplifies the model structure,
reduces the need for ground measurements, and can provide results comparable with those from earlier
madels. The LSWI-based CASA model is potentially an alternative method for modelling NPP for a wide
range of vegetation types in the Mongolian Plateau.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vegetation net primary productivity (NPP) is defined as the net
accumulation of organic matter through photosynthesis by green
plants per unit of time and space and represents the net primary
source of food energy for Earth’s living entities, including human
beings (Yu et al., 2009a). It is a key component of the terrestrial
carbon cycle (Piao et al., 2005) and serves as a sensitive indicator of
ecosystem performance at both local and global scales{ Lobell et al.,
2002). Quantitative estimates of NPP at regional to global scales
are therefore significant for understanding changes in ecosystem
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structure and function, predicting terrestrial carbon cycle trends
(Field etal., 1995; Nemani et al., 2003; Yu et al., 2009a), determining
sustainable use of natural resources, and making policy decisions
(Mu et al., 2013a,b).

Remote sensing is currently regarded as a powerful and unique
tool for characterizing vegetation structure both globally and
reproducibly and has also played an increasing role in estimat-
ing ecosystern NPP (Hicke et al., 2002; Running et al., 2000;
Zhao and Running, 2010). Numerous RS-based models for esti-
mating NPP, such as the Carnegie-Ames-Stanford-Approach (CASA)
model (Potter et al.,, 1993), the MOD-Sim-Cycle model (Hazarika
et al., 2005), the GLO-PEM model (Prince, 1991), and the Biome-
BGC model (Running et al., 2000), have been developed in recent
decades to study the dynamics of vegetation productivity and
its responses to climate change and anthropogenic activities at
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scales ranging from local to global. However, several recent studies
have highlighted that all these models for estimating NPP glob-
ally have a number of uncertainties and systematic errors when
implemented in certain specific ecoregions (Fensholt et al., 2006;
Yu et al, 2009b; Zhao et al., 2005, 2006), although their results
are excellent at the global scale (Nemani et al., 2003 Potter et al.,
1993). For example, the MODIS NPP products (MOD17A3), which
are the first regular and near-real-time vegetation primary pro-
ductivity data sets modeled by the Biome-BGC model at 1km
resolution, contain considerable errors in certain small regions
(Zhao et al., 2005), particularly in some regions with arid and semi-
arid climate {Fensholt et al., 2006) and tropical regions (Zhao et al.,
2008). These errors arise because of the coarse and inconsistent
spatial resolution of the meteorological reanalysis data (not the
observed data) (1.00° x 1.25°) compared with the MODIS pixels
(1km x 1km) (Sims et al., 2008 ). These reanalysis data were used
as a key input for MODIS NPP modeling (Sims et al., 2008; Zhao
et al., 2005). Another reason for the uncertainties of the MODIS NPP
products in certain small regions may be that global-scale studies
may neglect small-scale heterogeneity to some extent if local het-
erogeneity did not have a decisive effect on the whole (Bao et al.,
2015). Furthermore, the MODIS NPP products provide only annual
NPP (annual summations) (Running et al., 2000: Zhao et al., 2005),
making it impossible to perform analysis at finer temporal scales
(such as seasonal, monthly, or shorter timescales).

Therefore, it is imperative to improve or adjust these mod-
els, which were developed at a global scale, to adapt to different
ecosystems in specific ecoregions as well as finer temporal scales
byintroducing available localinformation (Yuetal., 2009b) or other
remote-sensing information (Simset al., 2006b). In particular, mod-
elsthat are based entirely onremote-sensing data and can therefore
produce truly continuous output at the same spatial resolution as
satellite imagery are increasingly becoming a major focus of eco-
logical modelers (Sims et al., 2006b; Wu et al,, 2010a,b). Among
the models that estimate NPP globally, the CASA ecosystern model,
also called the light-use efficiency (LUE) model, is one of the most
widely used models which adequately addresses NPP spatial and
temporal dynamics at regional to global scales (Field et al., 1995;
Mu et al., 2013b; Piao et al., 2005: Potter et al., 1993). Its success
at the global scale is primarily due to its incorporation of per-pixel
remote-sensing observations into the model and the relative sim-
plicity of its algorithm (Mu et al., 2013b; Yu et al., 2009b). The
fundamental concept of NPP for a given location x and time tin the
CASA model is a variant of the LTUE model originally proposed by
Monteith (1972), in which NPP is the product of the photosynthet-
ically active radiation (PAR) absorbed by green vegetation (APAR)
and LUE:

NPP(x, t) = PAR(x, £) » FPAR(x, £) % &(x, 1) (1)
8(Xs t) = €max % TS] (Xa f) * Té‘z(xs f) x WS(Xa f), (2)

where ¢ is the LUE and FPAR represents the fraction of absorbed
PAR . It has been demonstrated in previous studies that APAR
(PAR x FPAR) is relatively easy to estimate from remotely sensed
data because FPAR is a strong function of the normalized differ-
ence vegetation index (NDVI) (Coward and Huemmrich, 1992; Los,
1998; Sims et al., 2006b; Yu et al., 2009b). By comparison, £ has
proved more difficult to estimate because it varies over seasons,
biomes, or even species (Ahl et al., 2004; Sims et al., 2006b). Typical
methods for estimating = in the CASA model require prior specifica-
tion of amaximum LUE { emax ) for agiven biome. This maximum LUE
has been downscaled by the temperature stress coefficient (TSC)
and the moisture stress coefficient (MSC) (Eq.(2)) (Field et al., 1995
Potter et al., 1993). Early studies set ema to 0.405gCiM] (Potter
et al., 1993) worldwide, but more recent studies have set gpax to
various values ranging from 0.389 to 0.978 g C/M] for 13 types of

biomes in East Asia(Yu et al., 2009b). Therefore, when gy, is spec-
ified as a constant value for different biomes, the estimates of TSC
and MSC are of key importance for using the CASA model. Gener-
ally, the two TSCs are relatively easily computed using the monthly
mean temperature and the optimal temperature for plant growth,
which is the temperature during the month of maximum NDVI
(Piao et al., 2005; Potter et al., 1993). In comparison, an estimate of
MSC can usually be obtained from a one-layer budget soil moisture
model (SMM) (Malmstrém et al., 1997: Potter et al., 1993). How-
ever, an SMM always has a very complex model structure and needs
many input soil parameters, including wilting coefficient, percent-
ages of soil, sand, and clay particles, and soil depth (Saxton et al.,
1986; Yu et al., 2009b) as well as monthly temperature and pre-
cipitation. Such data are often unavailable at sufficiently detailed
spatial scales and are usually extracted from a soil class map with
lower resolution in both space and time (Piao et al., 2005). Con-
sequently, such data can introduce considerable errors into the
output values of both MSC and final NPP and have been highlighted
as one of the major limitations in the CASA model (Piao et al., 2005;
Yu et al., 2009a,b), particularly when the model is implemented
in specific ecoregions with a limited number of ground observa-
tions. Furthermore, no remote-sensing information was used in the
MSC estimates in CASA, unlike the estimates of both APAR and TSC,
which all include satellite NDVI data. Although it may be possible
to improve the accuracy of M5C and final NPP outputs by improving
the accuracy of soil parameters and climatic variables, it might be
simpler and more direct to base the MSC estimates, at least partly,
on remote-sensing data and thus undertake to provide continu-
ous output with the same temporal and spatial resolution as the
NDVI-used APAR and TSC.The land-surface water index (LSWI), a
combination of the near-infrared and shortwave infrared bands, is
arepresentative parameter of leaf and canopy water content as well
as of soil moisture (Fensholt and Sandholt, 2003: Mao et al., 2014
Kiaoetal.,2004a). The LSWlis based on the contrast betweenreflec-
tioninthe infrared band caused by vegetationleaf cellular structure
and absorption in the shortwave infrared band due to vegetation
water content and soil moisture and can be calculated as LSWI=
(NIR — SWIR) / (NIR + SWIR), where NIR and SWIR represent the
reflectance in the near-infrared and shortwave infrared bands,
respectively. Ahigh index value indicates larger quantities of water
in the canopy, whereas alow value indicates canopy water stress. In
the vegetation photosynthesis model (VPM), developed to estimate
gross primary productivity (GPP) proposed by Xiao et al. (2004a),
the LSWI was successfully used to estimate the coefficient of water
stress restriction on emax using the near-infrared (841-876 nm)and
shortwave infrared bands (1628-1652 nm) of the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS). This approach has been
validated in various ecosystems, including evergreen needleleaf
forest (Xiao et al., 2004a, 2005a), temperate deciduous forest (Wu
etal., 2010b; Xiaoetal.,2004b), tropical evergreenforest (Xiao et al.,
2005b), and (semi-) arid grassland ecosystems (John et al., 2013).
However, to date there is a dearth of information in the literature
describing the use of ISWI to estimate MSC in the CASA model as
well as in other remote-sensing-based NPP models. Furthermore,
the VPM model that estimates GPP based on LSWI has been used
only at the very small scale of a flux tower footprint, which is gener-
ally <1 km and cannot provide truly per-pixel GPP output (Rahman
et al., 2005). Therefore, large-scale LSWI applications (per pixel)
need to be further tested for both NPP and GPP modeling, partic-
ularly with the aim of providing a MSC with the same spatial and
temporal resolution as NDVI data, which is used to estimate APAR
and TSC.

Due to the limitation of estimating MSC in the CASA model (Yu
et al., 2009b), an effort has been made in this research to improve
and evaluate the CASA model by introducing LSWI (an LSWI-based
CASA model) derived from the MODIS near-infrared and short-
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wave infrared bands, with a 500 m spatial resolution and a monthly
interval, to quantify the spatial changes in the NPP of terrestrial
ecosystems in the {semi-) arid climate of the Mongolian Plateau.
To the best of our knowledge, this is the first study to downscale
the £max in the CASA model by introducing ISWI and to simulate
vegetation NPP at a truly per-pixel scale based on [SWI (i.e., at
large spatial extent) in arid and semiarid ecosystems. The result
will not only explore an alternative method for estimating the MSC
in the CASA model, but also provide a finer spatial (500 m x 500 m}
and temporal {monthly) resolution NPP output than the MOD17A3
product (1 km x1km and yearly) in the plateau.

1.1. Data and methods

1.1.1. Study area

The Mongolian plateau is located in a transitional belt extend-
ing from the Gobi Desert of Central Asia to the Siberian taiga
forest from south to north and covers an area of approximately
2.7 millionkm?. It is occupied by the Inner Mongolia Autonomous
Region, China in the southeast (1.2 million km?), and Mongolia
in the northwest (1.5 millionkm?) (Bao et al., 2014) (Fig. 1). The
plateau is governed by a typical continental climate regime with
extremely cold winters and warm summers (Angerer et al., 2008).
The multi-year mean precipitation varies from <50mm in the
southwestern Gobi Desert to >400 mm in the northeastern forests.
Annual mean temperature is primarily latitude-dependent, rang-
ing from approximately 1.5°C in the northern mountains to 16°C
in the southwestern Gobi Desert. Due to the arid and semiarid
climate, steppe grassland is the dominant ecosystem type, cov-
ering about 84% and 66% of the total territories of, respectively,
Mongolia and Inner Mongolia, except for the northern (Mongolia)
and northeastern (Inner Mongolia) forested area and the south-
western Gobi Desert (Angerer et al., 2008: Bao et al., 2015: Wang
etal., 2013). Because the plateau is shared by two different entities
(Mongolia and Inner Mongolia, China) with different economic and
social organizations, the plateau ecosystems are subject to different
human populations and anthropogenic impacts on the two sides of
the international border (Neupert, 1999). Inthe northern part of the
plateau, Mongolia still harbors vast, high-quality grasslands with
nomadic pastoralism from ancient times until now that represent
rare reference ecosystems in near-natural condition for ecological
modeling and climate change studies (Zemmrich et al., 2010). Fur-
thermore, the population of Mongolia was 2.83 million in 2011,
with the lowest density in the world, 1.8 persons per square kilo-
meter (Mongolian Statistical Yearbook, 2011). In the southern Inner
Mongolia region, on the contrary, the nomadic pastoralism of the
past has changed to sedentary village-based pasturing with rela-
tively higher population density and pressure on natural resources.
This difference makes the plateau an ideal region for comparing
both ecological models and ecosystem evolution trends under dif-
ferent human pressures {Bao et al., 2014).

1.2. Dataset and pre-processing

1.2.1. MODIS reflectance data

The 8-day Terra MODIS surface reflectance atmospheric cor-
rection algorithm product (MODO09A1) with a resolution of
500 m x 500m and with seven bands from optical to shortwave
ranges for 2009 (because the field data were collected in late July
and early August 2009) was used to derive the NDVI and LSWI,
which were then used to parametrize the CASA model based on
the following equations:

_ (Rz—Ky)
NDVI = TR (3

(Rz — Rs)

LSWI = CEE (4)
where R, represents the reflectance in a given band of the MODIS
data. To decrease non-vegetation effects in the MODIS-derived
NDVI and to model the NPP at monthly scale, growing-season
monthly NDVI and LSWI data were generated by applying the max-
imum value composite (MVC) method (Holben, 1986) to several
images for each growing-season month. The growing season was
phenologically defined as the period from April to October, and
this season was the focus of this study because during winter most
plants in the plateau are covered by snow and almost all photosyn-
thesis ceases (Bao et al., 2014).

1.2.2. Meteorological data

The meteorological data supplied to drive the CASA model
included growing-season monthly mean temperatures, monthly
precipitation amounts, and monthly solar radiation. These data
were derived from 108 meteorological stations (Inner Mongolia:
48, Mongolia: 60)and 22 solar radiation observation stations ( Inner
Mongolia: 8, Mongolia: 14) across the plateau (Fig. 1) and were
provided by the Mongolian and Inner Mongolian Weather Bureaus.
These data were interpolated in the ArcGIS environment using the
kriging method at a spatial resolution of 500 m to match the NDVI
and [SWIboth temporally and spatially and to implement the CASA
model at the pixel scale. Solar radiation was converted to PAR by
multiplying by 0.5 (Piao et al., 2005). Although some errors may
have resulted from a real interpolation due to the limited number
of meteorological stations available (Piao et al., 2005), the kriging
method has been recommended as a better interpolation method
with higher accuracy and lower bias than other methods (Li et al.,
2005), particularly in regions where elevation changes are mini-
mal (mostly grassland ecosystems) like the Mongolian Plateau (Bao
etal., 2015).

1.2.3. Vegetation type

Vegetation type data were obtained from the National Atlas
of Mongolia (Institute of Geography, Mongolian Academy of Sci-
ence, 2009), and a vegetation map of Inner Mongolia with a scale
of 1:1000000 was used to set the maximum LUE and to analyze
NPP variations at the biome scale. The vegetation map was first
scanned, geometrically corrected, mosaicked, and digitized using
the ArcGIS software and then rasterized at 500 m, as was done
for the climatic datasets. As in previous studies (Bao et al., 2014,
2015), vegetation types in the plateau were further grouped into
coniferous forest, broadleaf forest, shrubs, meadow, steppe, desert
steppe, alpine steppe, sandyland vegetation, and crops( Fig. 1). Gobi
Desertvegetation wasneglected in the present studybecauseit was
extremely sparse.

1.2.4. Field observation data

Tovalidate the results of the [SWI-based CASA model, two types
of field-observed biomass values were collected. The first type,
provided by the Inner Mongolia Institute of Grassland Survey and
Planning, was the aboveground biomass (AGB) measured in 147
plots (1 m x 1m) in the Hulunbuir and Xilingol grasslands and the
Ordos Plateau in August 2009, covering meadow, typical steppe,
and desert steppe (Fig. 1). The second type was the aboveground
and belowground biomass (BGB) measured in 12 plots (1m x 1m)
in August 2012 in the Hulunbuir grasslands of Inner Mongolia. Con-
sidering that some sampling sites were very close to roads and
villages or were located within cultivated farms or forests (and
thereforesubject to human disturbance) (Xieet al.,2009), 101 of the
147 samples used as validation plots and 46 plots were discarded
in 2009. The biomass was hand-harvested at the ground surface
and was oven-dried at 65°C until a constant dry biomass value
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Fig. 1. Location of the study area and the spatial pattern of vegetation types, with the distribution of meteorological stations and sampling sites.

was recorded. Because the model-simulated NPP includes both
the aboveground NPP (ANPP) and the belowground NPP (BNPP),
the field-observed biomass values in 2009 were converted to NPP
according to the method proposed by Gill et al. (2002); Egs. (5)-(7)
and the ratio of BGB to AGB determined for different steppe grass-
land types. The ratio was set to 3.982 for typical steppe as calculated
from data for 12 plotsin 2012 and to 5.26 and 7.89, respectively, for
meadow and desert steppe, a set of values proposed by Piao et al.
(2007), because all sampling plots are located within these three
types of grasslands:

NPP = ANPP + BNPP (5)
liveBGB

BNPP = BGB x ( 5CE ) x turnover (6)

turnover=0.0009(gm~2) x ANPP + 0.25, (7)

where liveBGB is the living BGB for a current year, liveBGB/BGB was
set to 0.6 according to the results reported by Gill et al. (2002), and
turnover is grassland root turnover. AGB was converted to ANPP
using a conversion factor of 0.475 (Scurlock et al., 1999).

1.3. Method

1.3.1. Justification of the approach used to estimate a modified
MSCin the CASA model

In early CASA models, the MSC was calculated as:
We(x,t)=0.54+0.5 x % (8)
where EET and PET represent the estimated and potential evap-
otranspiration and are usually determined from the one-layer
budget SMM (Piao et al., 2005; Potter et al, 1993). The value of
W;(x, t) usually varies from 0.5 in very arid ecosystems to 1 in very
wet ecosystems. According to this logic, the potential use of per-
pixel Wypmy in the VPM model (Eq. (9)) proposed by Xiao et al.
(2004a) was investigated for estimating a per-pixel MSC in the
CASA model. It was found that per-pixel Wypm values are simply
contraries of We(x, t) (Eq. (8)) and range from 0 in very wet ecosys-
tems to 1 in very arid ecosystems. This may be a major limitation
of the VPM model when implemented at a per-pixel scale:

1+ LSWI

Wopm = ——————
VP T LSWnax

9
where LSWIax represents the maximum LSWI within the growing
season for individual pixels and is estimated using the MVC method
(Holben, 1986). According to the principle of Wy (x, t) in the early
CASA models, which varied from 0.5 in very arid ecosystems to 1 in

very wet ecosystems, the values of Wypm were accordingly inverted
to match the range of W, (x, t) values as follows:

1+ LSWI
vam_inversed = ( - m

Although LSWI and the derived Wy, _inversed €an capture the gra-
dient and the variations in hydrothermal ecosystem conditions, it
has alsobeen suggested that precipitation has a profound impact on
vegetation productivity, and therefore that incorporation of precip-
itation information into ecosystem models can help to improve the
accuracy of vegetation productivity determinations (Wu and Chen,
2012), particularly in arid and semiarid ecosystems (Thomey et al.,
2011; Wu and Chen, 2012). Therefore, here the use of Wy inversed
was further justified by incorporating precipitation regimes. As a
meteorological scalar that mostly ranges from 0 to 1, a simple pre-
cipitation scalar (ScaledP) was first proposed as:

)+0'5, (10)

prec
3
PreCmax

ScaledP = (1
where prec represents the monthly precipitation amounts and
precmax is the maximum monthly precipitation within the grow-
ing season for individual pixels of interpolated precipitation. Based
on the two scalars, Wypm_inversed and ScaledP, a modified MSC
(Wiswi) algorithm was then proposed by multiplying Wy,m inversed
by ScaledP as follows:

Wiswi = Wypm_inversed X ScaledP +0.5, (12)

where the constant 0.5 ensures that Wi, ranges between 0.5 in
very arid ecosystems and 1 in very wet ecosystems, similarly to the
early CASA model (Potter et al., 1993; Yu et al., 2009b). Once the
modified Wi, was determined, the improved CASA model, called
the LSWI-based CASA model, was applied directly to the ecosys-
tems of the Mongolian Plateau without changing the estimates of
other variables in the algorithm, including APAR and the two TSCs.
In the present study, enax Was set equal to the values (Table 1) pro-
posed by Zhu et al. (2006) for the whole of China according to the
vegetation types of the plateau.

1.3.2. Evaluation of model performance

Two methods were used to evaluate the performance of the
LSWI-based CASA model. In the first method, the modeled NPP val-
ues were compared with those actually measured in 2009 (Fig. 1)
from 101 ground plots and the correlation coefficient and sig-
nificance level and root mean square error (RMSE) between the
two groups of data were examined (Huang et al., 2010; Mu et al.,
2013a; Xie et al.,, 2009). Because determining which pixel a par-
ticular ground plot fell into was difficult, average values of nine
pixels (3 x 3) of modeled NPP values were extracted according
to the location of the ground plot to represent the modeled NPP
(Rahman et al,, 2005). In the second evaluation, the results from
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Tahle 1

Maximum light-use efficiency of different biomes (CF: coniferous forest, BD: broadleaf forest, SB: shrubs, MD: meadow, ST: steppe, DS: desert steppe, AS: alpine steppe, SLV:

sandy land vegetation, CP: crops).

CF BF SB MD ST DS AS SLV CcP
Srmax 0.485 0.692 0429 0.542 0.542 0.542 0.542 0.542 0.542
Table 2

the LSWl-based CASA model were compared with those from the
CASA model as proposed by Yu et al. (2009b) (the Yu-CASA model).
This was one of the acceptable ways to proceed when large-scale
synchronous ground data for whole biome types were unavailable
(Wu et al., 2010b; Xie et al.,, 2009). To ensure comparability of
results from the two models, here we used absolutely identical
data sets to parameterize the two versions of CASA models, except
for MCS. The comparison between the two models was performed
at the biome scale and at the per-pixel scale, respectively, in the
plateau.

2. Results

2.1, Field sample-based accuracy validation of the two CASA
models

Validation was conducted by comparing the ground observed
NPP values from 101 plots covering meadow, typical steppe, and
desert steppe in Inner Mongolia in August 2009 with the mod-
eled NPP from both the L[SWI-based CASA model and the Yu-CASA
model (Fig. 2). Even though no significant improvement in R-
value (R2=0.717, p<0.001)was observed in the LSWI-based CASA
model (Fig. 2a), the proposed method achieved results compa-
rable to those from the Yu-CASA model (R?2=0.714, p<0.001)
(Fig. 2b). Generally, both models tended to; underestimate NPP
when the observed NPP was >120 g C/m?/Aug, overestimate when
the observed NPP was <45gC/m?/Aug in Inner Mongolian grass-
lands, and to generate predictions close to observed values when
the observed NPP were located in the vicinity of 70 g C/m?/Aug.
The RMSEs between the observed and modeled NPP from the two
models were 26.2 and 27.9 gC/mZ, respectively.

2.2, Comparison of predictions between the LSWIi-based CASA
model and the Yu-CASA model by biome type

Comparison of the monthly time trends of NPP for each biome
at a monthly scale (Fig. 3) shows a good general correspondence
between NPP as modeled by the LSWI-based CASA model and the
Yu-CASA model, particularly in spring (April-May) and in autumn
(September-October), indicating that the two models were similar
in terms of their ability to predict monthly changes in NPP for each
biome type. However, the [SWI-based CASA model tended to over-
estimate NPP slightly in the summer months; this bias was most
evident in July for desert steppe (Fig. 3e) and alpine steppe (Fig. 3i).
A simple linear regression model by biome type further showed
good agreement between the two models during the growing sea-
son in 2009, with RZ values ranging from 0.980 in alpine steppe
to 0.998 in typical steppe (Table 2). The RMSE s between the two
models for modeled NPP ranged from 3.24 to 15.52 g C/m?/month
in desert steppe and alpine steppe, respectively (Table 2).

2.3, Per-pixel comparison between NPP modeled by the
LSWI-based CASA model and the Yu-CASA model

Comparison of spatially explicit maps from different models
can provide further insight into fine distinctions in the spatial
output patterns from different models (Xie et al., 2009). The spa-
tial pattern of the total NPP in the 2009 growing season modeled
by the LSWI-based CASA model (Fig. 4a) and the Yu-CASA model

Correlation coefficients and RMSE (g C/m*/month) between the LSWI-based CASA
modeled NPP and the Yu-CASA modeled NPP.

Vegetation type Correlation coefficient (R*)  RMSE (g C/m*/month)
Coniferous forest 0.996™ 658
Broadleaf forest 0.983™ 10.56
Meadow steppe 0.994 5.90
Typical steppe 0.998™ 6.39
Desert steppe 0.985™ 3.24
Alpine steppe 0.9580™" 1552
Shrubs 0.997°" 3.59
Sandy land vegetation ~ 0.994" 5.67
Crops 0.995 6.65
All vegetation 0.982"" 13.44

™" Indicates p<0.01.

(Fig. 4b) were compared at the per-pixel scale. To ensure spa-
tial pattern comparability of the results from the two models, the
same density slice (legend of the two maps) was used to map
the final NPP. When comparing the NPP maps generated by the
two models, it is clear that very similar spatial patterns can be
observed in the two NPP maps in terms of both the spatial dis-
tribution and NPP values (Fig. 4a, b), indicating that the predictions
of these models are consistent and comparable with each other in
the Mongolian Plateau. The average NPP modeled by the Yu-CASA
and LSWI-based CASA models was approximately 216.2 and 232.6
(g C/m?/April-August), respectively. There was only a difference of
around 16gC in the growing-season sum NPP, or approximately
2.3gC bias per month. Consistently with the vegetation gradient
(Fig. 1), the NPP exhibited a decreasing trend from northeast to
southwest (Inner Mongolia) and from north to south (Mongolia).
The highest NPP values, »400 g C/m?/April-August, tended to con-
centrate in northern Mongolia and northeastern Inner Mongolia, in
areas with high-density forest. The moderately high values, rang-
ing from 100 to 400 g Cfm2/April-August, were mostly distributed
over the central parts of the plateau, where the land is dominated
by meadow steppe, typical steppe, crops, and shrubs. The lowest
values, <100 g C/m?jApril-August, were generally observed in the
dry grasslands and desert regions (Gobi Desert) of the southern
and western regions of the plateau. Furthermore, very high per-
pixel correlations can also be observed between the NPP modeled
by the two models (Fig. 4c), with R values >0.98 over most of the
study region, except for relatively lower values in the southwest-
ern Gobi Desert. However, R values in this region are >0.85 and are
significant at the 0.001 level.

3. Discussion
3.1. Feld sample-based accuracy evaluation

Amodified version of the CASA model was proposed and tested
by adjusting the MSC of the early CASA model (Potter et al., 1993),
and the results were compared with the results of the Yu-CASA
model (Yu et al., 2009b). The accuracy of the two models was vali-
dated using the same ground-observed NPP data derived from 101
sampling sites covering three types of grassland in Inner Mongolia.
The R? and RMSE values between both the [SWI-based CASA and the
Yu-CASA model and the observed NPP were approximately equal,
indicating that the predictions of these models were relatively sta-
ble and similar (Fig. 2). The results of the two models were also
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comparable to results from previous studies in Inner Mongolia (Mu
et al,, 2013a,b) and in the Qinghai-Tibet Plateau (Fan et al., 2010).
The results showed satisfactory agreement (correlation coefficients
between modeled and observed NPP) with studies of year-to-year
NPP variation if considering the errors of both the modeling pro-
cess and field observations (Fan et al,, 2010; Mu et al., 2013a).
However, compared to the earlier CASA model, the accuracy of the
proposed LSWI-based CASA model, which adjusted the structure
and parameters for estimating the MSC, was not improved signif-
icantly (Fig. 2a) as measured by the correlation coefficient with
observed NPP. However, MSC estimation was greatly simplified (Eq.
(12)), not only in model structure, but also in model execution com-
pared to the original logic of the CASA model, which normally used

a complex SMM (Field et al., 1995; Piao et al., 2005; Potter et al,,
1993) or alarge amount of external climate data (Yu et al., 2009b) to
estimate the MSC. However, some concern may arise from the fact
that the accuracy evaluation was not performed at a plateau scale or
in other specific biomes, including forest, cropland, and shrubland.
These limitations are not advisable, but were necessitated by the
limited number of acceptable samples due to the restricted acces-
sibility of certain areas and the lack of corresponding observational
data (Xie et al., 2009). These limitations are especially prevalent in
regions like the Mongolian Plateau which links two countries (Bao
et al, 2014) and where most of the plateau is covered by steppe
grasslands (about 84% and 66% of the total territories of Mongolia
and Inner Mongolia), except for a small number of forested areas
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and the Gobi Desert (Angerer et al., 2008; Bao et al., 2015; Wang
et al., 2013). In such cases, a comparison with other relevant mod-
els is one of the most widely used methods (Xie et al., 2009; Zhu
et al,, 2006) and can be used to test model accuracy and stability in
previous studies (Xie et al., 2009).

3.2. Comparison between the LSWI-based CASA model and the
Yu-CASA model

Regardless of the kind of comparison (per-pixel or by biome
type) between the LSWI-based CASA model and the Yu-CASA
model, a very high level of correspondence was found between the
outputs. This indicates that the LSWI-based CASA model proposed
here has strong potential as an alternative method to estimate the
NPP of a wide range of vegetation types at the scale of the entire
Mongolian Plateau. Furthermore, it also indicates the comparabil-
ity of the two models to capture the phenological NPP growth cycle
(Fig. 3). The spatial NPP distribution patterns and values from the
two models for the Mongolian Plateau are not only in accordance
with each other, but are also consistent with the results obtained
by Yuetal. (2009b) and Matsushita and Tamura (2002), which were
obtained for the entire East Asian ecosystem. The growing-season
mean NPP values (216.2 g C/m?/April-August [the Yu-CASA model]
and 232.6 g C/m?/April-August [the LSWI-based CASA model]), are
generally located in the range (200.34-251.72gC/m?/year from
2003 to 2008) observed in Inner Mongolia. Furthermore, the
growing-season mean NPP values are spatially consistent with the
distribution in Inner Mongolia, particularly in the forest area of
northeast Inner Mongolia, as reported by Li et al. (2013), with a
value of >500 g C/m?2/April-August. The NPP values are also similar
to the results from Mu et al. (2013a) in Inner Mongolia that ranged
from 235.0 to 271.6gC/m?/year during the period 1985-2009.

However, compared to the proposed method for estimating the
@; Potter et al.,, 1993) or the improved CASA model for the
ecosystems of East Asia (Yu et al., 2009b) and Inner Mongolia (Li
etal., 2013)require multiple input parameters to estimate the MSC,
and these parameters are often difficult to obtain, particularly when
the study area covers more than one country, as is the case in the
Mongolian Plateau. The LSWI-based CASA model was optimized
for NPP modeling in arid and semiarid regions by introducing LSWI
(Wypm_inverse) and ScaledP to account for the effects of moisture
condition, which is a key parameter in dryland regions (Wu and
Chen, 2012) and adjusting maximum LUE in the early CASA model.
This may be an improvement in NPP modeling over the CASA model,
although LSWI is widely used in GPP modeling (Xiao et al., 2004a)
color of this citition. In particular, the use of LSWI at the per-pixel
scale, which has been used in previous studies only for a flux tower
footprint with a relatively limited spatial coverage (John et al.

2013; Wuetal,, 2010a,b; Xiao et al., 2005b), can provide aMSC W1th
continuous spatial coverage, and a high degree of spatial variabil-
ity can be observed at the per-pixel scale (Fig. 5a). However, a MSC
that is totally derived from climatic variables or SMMs (Piao etal,
(e g., dlfferences between each density slice) due to the 1nterpola—
tion of all climatic variables and soil parameters. This discontinuity
may raise some uncertainties about output ecosystem productivity
(Gu et al., 2013). Precipitation variability has been shown to have
a significant effect on ecosystem productivity (Beer et al.,, 2010).
The scaling method for precipitation quantities (Eq. (11)) proposed
here to estimate the MSC is similar to the scaling method for precip-
itation intensity proposed by Wu and Chen (2012), who reported
that scaling precipitation could correct for regional differences and
improve the precision of monthly GPP estimates by 10% in four
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was taken as an example).

North American grasslands. Use of LSWI and scaled precipitation
in this study has further confirmed the results of these earlier GPP
modeling studies (John et al., 2013; Wu and Chen, 2012; Xiao et al.,
2004a) and has also extended their utility to NPP modeling, partic-
ularly at the per-pixel scale, which has been highlighted as one of
the major limitations in the use of LSWI in earlier studies (Rahman
et al.,, 2005).

3.3. Potential future challenges for the proposed MSC

Although it has been suggested that the results presented in
this study might provide a first case study of the utility of LSWI
and scaled precipitation in NPP modeling of the arid and semi-
arid climate of the Mongolian Plateau, specific attention has also
been paid to future analysis. Firstly, the feasibility of any improve-
ments to the modified model needs to be further tested in other
ecosystems, even globally, as has been done for the VPM model
(John et al,, 2013; Xiao et al., 2004a,b, 2005b), because vegeta-
tion under specific hydrothermal conditions always has different
response characteristics to climatic variables and hydrothermal
conditions (Bao et al., 2015; Chuai et al,, 2012; Mao et al,, 2014).
This is a possible reason for the different responses of LUE to vary-
ing hydrothermal conditions over both space and time (Sims et al.,
2006a; Wu and Chen, 2012). Use of LSWI and scaled precipitationin
the Mongollan Plateau can only serve as a representative sample of
ecoregions with an arid and semiarid climate. Secondly, although
the scaled LSWI (Wypm) (Eq. (9)) was directly used to adjust the
maximum LUE in the VPM model (Xiao et al., 2004a,b, 2005b),
it seems inappropriate to adjust the maximum LUE in the CASA
model directly (Potter et al., 1993) because the spatial distribution
of Wypm at the per-pixel scale ranges from 0 in very wet ecosystems
to 1 in very arid ecosystems. This may be one of the most impor-
tant considerations in using LSWI at the per-pixel scale, not only in
VPM models, but also in other related ecosystem models. Thirdly,
LSWI was chosen to adjust the maximum LUE according to the
results from previous studies that suggested that the LSWI is more
sensitive to leaf and canopy water content and soil moisture vari-
ation than the normalized difference water index (NDWI, NDWI =
(,00,86 - p1.24/p0.86 + ,01,24)) (Xiao et al., 2005a), particularly
in semiarid environments (Fensholt and Sandholt, 2003). However,
the preliminary comparisons among NDWI, LSWI, moisture stress
index, global vegetation moisture index and canopy water con-
tent and soil moisture variation in different ecosystems needs to
be further explored, particularly at the per-pixel level for large-
scale application. More field work is needed to collect multi-scale

data on soil moisture and foliage water content and to explore their
relationship with the water index described above. The last consid-
eration is the underlying mechanism between LUE and LSWI and
scaled precipitation. Although reasonable results were observed
here compared with the Yu-CASA model and field observation data,
it is still unclear why larger differences were observed in summer
months (July-August) in alpine steppes (Fig. 3i). Although these
may have been caused by the higher LSWI value due to the per-
manent snow cover in some higher mountain areas where alpine
steppe is distributed (Li et al., 2007), this observation still indicates
that further analysis and validation are needed to clarify how LSWI
and scaled precipitation impact the LUE. Unknown mechanisms are
always an impediment to further modification of a model (Wu and
Chen, 2012).

4. Conclusions

This study proposed a new method (the LSWI-based CASA
model) to estimate regional NPP for the Mongolian Plateau ecosys-
tems with an arid and semiarid climate using MODIS reflectance
data and climatic variables (PAR, temperature, and precipitation)
and compared the results with those from the Yu-CASA model and
field observation data. The proposed method improved the MSC
calculation by using satellite remote sensing-derived LSWI and
precipitation instead of values from SMMs or climate-dependent
models and can offer a cost-effective solution for estimating the
MSC. Both models are based on the principle of the LUE model orig-
inally proposed by Monteith (1972) and can provide comparable
results for NPP in the Mongolian Plateau. The results obtained indi-
catereasonable agreement between field-observed NPP and NPP as
predicted by the LSWI-based CASA model and the Yu-CASA model,
indicating the potential for these LUE models to simulate NPP in
semiarid ecoregions. These results will be useful for the devel-
opment of future NPP models based entirely on remote-sensing
observations. However, some differences and uncertainties in NPP
output were found to exist between the LSWI-based CASA model
and the Yu-CASA model, particularly in specific biomes in summer.
It remains unclear which model is the most accurate predictor of
NPP in some specificbiomes due toalack of timely and synchronous
NPP values from field observations with remote-sensing imagery.
Therefore, further modeling efforts should be concentrated pri-
marily on years and months in the same ecoregions and on other
ecosystems, as done in previous studies using the VPM model.
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